Student Name:

Class Account Username:

Instructions: Read them carefully!

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

Make sure you fill in your name and the above information, and that you sign below. Anonymous tests will not be graded.

Write legibly. If the person grading the test cannot read something, he/she will simply assume that you meant the illegible portion as a note to yourself and they will ignore it. If you lose points because part of your answer could not be read, you will not be given the opportunity to explain what it says.

Be clear and concise. The answers to most questions should be short. If you find yourself writing an excessively long response, you may want to think more carefully about the question. Long rambling answers generally get fewer points that short ones do because there are more opportunities to mark something wrong.

You may use one page of notes while taking the exam. You may not ask questions of other students, look at another student's exam, use a textbook, use a phone or calculator, or seek any other form of assistance. In summary: do not cheat. Persons caught cheating will be subject to disciplinary action.

Do not ask questions during the exam. Most questions are unnecessary and they disturb other students. Figuring out what the exam question is asking is part of the test. If you think you have to make some unusual assumption to answer a problem, note what that assumption is on the test.

I have read these instructions, I understand them, and I will follow them.

Your Signature: \qquad

Date:

Student ID:

Total Points: XX You Scored: \qquad

1. Please fill in each of the blanks with an appropriate answer.

Visible light roughly corresponds to wavelengths between \qquad and \qquad nanometers.

Spectral colors have a very \qquad appearance.

The human eye contains receptor cells, called \qquad , that are sensitive to color and function well under bright lighting.

A typical person has this many \qquad types of receptor cell at are sensitive to color and function well under bright lighting.

The human eye contains an additional type of receptor cell, called \qquad that are used under low-light conditions.

Given a set of three primary colors, the color gamut for linear mixing is defined by the
\qquad of the colors plotted as points in the CIE color space.

The "H" in HSV color space stands for \qquad -

A phenomenon called \qquad creates "rainbow colors" by means of wave interference.

The term \qquad refers to energy emitted by hot objects.

The \qquad describes how light is reflected from the surface of a material.

A \qquad shading model focuses only on how light interacts with a single surface and does not account for paths containing multiple bounces of light.
\qquad is a phenomena that plays a key role in the appearances of milk and the sky.

Ideal \qquad materials reflect light uniformly in all directions.

The exponent in the Phong specular model controls the appearance of the \qquad .

Directional lights behave like lights located \qquad .
\qquad shading is relatively cheap and generally works reasonably well for diffuse objects. However it performs quite poorly at producing correct specular highlights.

By commonly used convention, rotations in the plane are measured so that positive rotations are in a \qquad direction.

Rotation matrices have determinant of \qquad .

Any arbitrary matrix can be decomposed into a series of rotations and \qquad .

Among other benefits, \qquad coordinates allow translation to be expressed using matrix multiplication.

The parameterization of rotations know as \qquad suffers from problems with gimbal-lock.
lights.

Computing the intersection of a ray with a sphere requires solving a \qquad equation.
\qquad is a data structure that recursively partitions space in a binary fashion.

Orthographic viewing is a special case of \qquad where the center of projection is moved to be "infinitely far away."

In linear perspective projection, straight lines project to a geometric shape know as
\qquad .
\qquad is common office device produces color output by mixing colors in an additive way.
\qquad is common office device produces color output by mixing colors in an subtractive way.

CS 184 is absolutely the most \qquad class ever.

The mnemonic \qquad reminds people of order of colors in the spectrum.

The word \qquad describes two colors that appear the same to the human eye but that have different specular distributions.

Bresenham's line drawing algorithm uses \qquad only arithmetic.
2. You have two pieces of opaque orange plastic, pieces " A " and "B." When viewed under light source " X " they look identical in color, but when viewed under sunlight (light source " Y ") they look different. Draw a set of curves showing the spectral reflectance for A and B and spectral emissions for X and Y that could provide a reasonable explanation for this situation.

Note: Makes sure the curves you draw show plausible distributions. In other words, if you tried to draw a curve for "blue" by making a hump centered at 700 nm , it would be wrong.

A

B

X

Y
3. A perspective camera has its center of projection at [$9, \sqrt{2},-5$], and it's image plane is defined by $z=+7$. What set of lines vanish at the same point in the image plane as does the line $x(t)=$ $[3,0,1]+t[1,1,-1]$?

Be precise and concise.

What lines do not vanish to any finite point in the image?
3 points
Be precise and concise.
4. Circle the types of transformations that to be expressed in matrix form require homogenized coordinates.

Translation

Scale

Rotation
Shear
Perspective
5. This diagram shows a triangle with vertices labeled a, b, and c. Several locations have been indicated with circles. The list of numbers to the right contains triples of numbers representing the barycentric coordinates of these circles. Draw a line connecting each triple with the correct circle. Cross out the triple that does not match any circle.

[0.5, 0.0, 0.5]
[0.0, 0.0, 1.0]
[0.8, 0.1, 0.1]
[0.1, 0.8, 0.1]
[-0.1, 1.2, -0.1]
[0.1, -0.2, 0.1]
6. The following diagram shows the the x-y plane of the CIE color space. Mark and label the approximate locations of spectral orange, spectral yellow, spectral violet, spectral green, sky-blue, and white. 12 points

7. Given a rotation encoded as a length-3 vector (e.g. axis-angle, a.k.a. exponential map), in general how is the rotation changed when the representation is negated?

3 points
8. Given a rotation encoded as a quaternion, in general how is the rotation changed when the representation is negated?

3 points
9. Name a physical phenomena that causes the appearance of color on a surface, and that typically causes the perceived color to change dramatically as the location of the viewer is changed.

4 points
10. Assume that I want to ray trace an image, and I decide that each time a ray strikes a surface I will send out K number of rays to sample the light coming in to that surface. How will my rendering time grow as I increase recursion depth?

4 points
11. One of the diagrams below shows a cube under orthographic projection, the other under perspective projection. Label which is which.

3 points

12. The following line segments will be inserted into a BSP Tree in the order indicated. As discussed in class, the lines themselves will be used to define the split planes. The numbers are on the positive side of each line.

Diagram the resulting tree below. If needed, show where line segments need to be split by marking on the above figure. Also, indicate the names of the split parts by writing labels on the figure above. (For example, if there were a segment 9 and it was to be split, you would draw a mark showing where it would be split and label the resulting pieces 9 a and 9 b .)

15 points

List the front-to-back traversal order that would result for the location indicated by the viewer icon (the star).

6 points
13. On the figure below write the appropriate letter in each of the blanks to label the diagram properly. Some of the letters are just there to confuse you.

A Center of Projection
B Small blind
C Top clipping plane distance
D View up vector
E View plane normal
F Main tank
G Near clipping plane distance
H Distance to image plane

I Zero point
J Bottom clipping plane distance
K Big blind
L Star power
M Far clipping plane distance
N Right clipping plane distance
O Left clipping plane distance
P Distance to a higher plane

