Problem \#1 (8 pts.) - Clipping

For the figure below list all the line segments that can be trivially culled away in the first step based on their "outcodes" in a Cohen-Sutherland line clipping algorithm.

These line segments can be trivially rejected: \qquad

Problem \#2 (10 pts.) - Circle the correct answer.

Rotations are described by orthonormal matrices.

True False

A perspective projection from 3D to 2D is a linear transformation.

True False

In a perspective projection, the smaller the distance between the object and the center of projection, the larger teh image of the object will be.

True False

A sphere with a surface that acts as a Lambertian diffuse reflector will look to an observer like a uniformly lit flat circular disk when illuminated only with an ambient light source and viewed with perspective projection.

True False

Problem \#3 (12 pts.)
For the self-intersecting polygon below, paint the "inside" according to the definitions of "inside": using the WINDING NUMBER MODEL.

Problem \#4 (28 pts.) - Short Questions.
(6) Circle all the 3D transformations that commute with non-uniform scaling in x :
nonuniform scaling in y ; translation in z ; mirroring in y ; rotation around x ; rotation around y .
(4) How many degrees of freedom are associated with all possible planar ellipses in R3? \qquad
(4) How many degrees of freedom are associated with all possible infinitely long cylinders of some (variable) diameter D in R3? \qquad
(6) What are the minimum and maximum number of vanishing points that can be obtained from a perspective projection of a regular five-sided prism ?

MIN: \qquad MAX: \qquad
(4) Which of the four directional vector diagrams below describes most appropriately the escape probability of a photon from an ideal Lambert surface?

(4) Describe in one sentence the essence of the contribution that Mr. Gouraud has made to teh field of computer graphics:

Problem \# 5 (8pts.) - Perspective Warp

What is the equation of the resulting plane in 3 -space after the perspective transform of the plane $\mathbf{x}=\mathbf{z}$ in the canonical perspective viewing volume ? (for your convenience, below is the homogeneous
perspective transformation matrix).

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1+z_{\min }} & \frac{-z_{\min }}{1+z_{\min }} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Problem \# 6 (12 pts.) - Rasterization
Using the paradigm discussed in class and used on Assignment \#8 (lower left pixel-corner sampling), rasterize the polygon below, i.e. paint in all the pixels that would get turned on in a scanline based fill algorithm. (Apparent coincidences are meant to be exact coincidences).

Problem \# 7 (16 pts.) - Compound Transformations

An elephant, "Edgar", stands at the origin of a 2D right-handed coordinate system, facing 'forward' in the +y direction. Nine meters to the right of him $\{$ at $(900 \mathrm{~cm}, 0 \mathrm{~cm})$ in WORLD $\}$ stands a mouse, "Micky", also facing in the +y direction. The two local coordinate systems of Edgar and Micky are parallel to that of WORLD. The circus director gives the commands:

- Forward (4) ! - TurnLeft (110 $)$! - Forward (9) !

Both animals obey; however, Edgar interpretes Forward(distance) commands in 'meters' (1m = 100 cm), while Mickey thinks it means 'centi-meters'; thus their individual paths are different.

What is the relative position of Micky with respect to Edgar after executing the above commands? Give a simple string string of transformation matrices for column coordinate vectors in short form notation, $\{\mathrm{T}(\mathrm{x}, \mathrm{y}), \mathrm{R}($ alpha $)\}$, with numerical arguments in centi-meters $\{\mathrm{cm}\}$ and/or in degrees $\left\{{ }^{\circ}\right\}$.

Problem \# 8 (12 pts.) - Illumination
(A) Sketch apparent brightness B , as seen from camera C , along real face F (Phong model, $K_{\mathrm{amb}}=\mathrm{K}_{\mathrm{diff}}=\mathrm{K}_{\mathrm{spec}}=0.5$, $\mathrm{N}_{\mathrm{phong}}=50$), illuminated by point-light p and directional light D .
Follow example X , showing the brightness of an ideal Lambert surface L , illuminated by point-light P .

Problem \# 9 (9 pts.) - Projections

The following images are all snapshots of an orthogonal planar grid, but taken with different cameras from different locations in 3 -space.
Determine the type of projection used in each case; circle the proper answer below each image.

Parallel - Perspective - Can't Tell! । Parallel - Perspective - Can't Tell! | Parallel - Perspective - Can't Tell!

Problem \# 10 (12 pts.) - Quadtree

Show a QUAD-TREE representing the geometry in the Figure below. Draw the tree with the children of each node appearing in order $\{1,2,3,4\}$ from left to right, and show the leaf-node values.

Problem \# 11 (7 pts.) - Parametric Representation
Give a parametric representation of a ray that starts at point A , passes through point B , and then goes off to infinity.

Problem \# 12 (16 pts.) - Hierarchical Scene

For the two-dimensional scene below, describe the various instance transform matrices listed below (e.g., (Flag) M<-F) as minimal concatenations of simple matrices of the type T(dx, dy), $S(s x, s y)$, and $R(a)$. Use as parameters only the dimensions and angles shown int eh figure below. (Assume teh use of homogeneous COLUMN coordinate triples.)

(Ship) $\mathrm{w}<-\mathrm{s}=$
(Mate)S<-M=
(Flag) $\mathrm{M}_{\text {<-F }}=$

