Problem #1
(A)

Here we are looking for exactly two of something, so use the general inclusion exclusion formula:

\[
\sum_{i=0}^{\lfloor k/2 \rfloor} (2+i)C(i) \times (k-2-i)C(2+i) \times 5^{k-2-2i}
\]

(B)

In this problem count the case AAA seperately... note the rest of the string must not contain AA

Then add on the case with AA and AA delimited by non A characters

Problem #2
The checker should pick a random vector \(v \), then for the supposed inverse, \(B \), compute \(A(Bv) \) and compare this with \(v \). If they are different, then \(B \) is not \(A \) inverse, otherwise there is less than 50% chance it is not the inverse. This must be repeated at least \(n \) times with linerly independent \(v \)'s to be sure that \(B \) is the inverse. Each repetition requires two matrix, vector multiplies, or \(O(n^2) \) operations.

Problem #3
When appending \(T \) after \(S \), consider the changes to the first level of nodes above the actual string. Only the last above \(S \), and the first above \(T \) will change. This is a constant number of changes which will be propogated up the fingerprint tree. So we have a constant number of changes at each level, and the number of levels is bounded by \(\log_2 n \), and therefore \(O(\log n) \) new nodes, and \(O(\log n) \) time to append.

Problem #4
(A) No. Once one of the good processors has tally \(\geq G \) then on the next round all the good processors will have tally \(\geq G \), and have all set their votes permanently.

(B) A processor can halt one round after it has set its vote permanently.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.