Solutions for CS174 Midterm 2

1. (a) Because a degree d polynomial can have at most d roots. So the upper bound is d / M.
(b) Because a degree d polynomial can have at most d roots, if we can find $\mathrm{d}+1$ distinct values of r such that the two polynomial agrees, that means $p(x)-q(x)=0$ have $d+1$ roots. Then we know for sure that they are identical.
2. (a) $m \approx k / \ln k$.
(b) $N \leq m k . k \approx m \ln k \approx m \ln (m \ln k) \approx m \ln m+m \ln (\ln k)$. So $k \leq 2 m \ln m$, because $\ln k<m$. So $n<2 m^{2} \ln m$.
(c) $N>m k / 2$. Because $k \approx \frac{m}{2} \ln k \approx \frac{m}{2} \ln \left(\frac{m}{2} \ln k\right)>\frac{m}{2}(\ln m+\ln ((\ln k) / 2))>\frac{m}{2} \ln m$. So $N>\frac{m^{2}}{4} \ln m$.
(d) $N=\Theta\left(m^{2} \ln m\right)$.
3. (a) $t^{2} / n^{2}=1 / 2$.
(b) $P(t)=1-\left(1-\frac{1}{4} P(t / 2)\right)^{2}$.
4. (a) There can be many answers for this. One is example is if we repeat the sequence of request $1,2, \ldots, k, k+1$. Another example is that we have the sequence of request $1,2, \ldots, k$ first to warm up the cache, then we request the sequence $k+1,1,2, \ldots, k-1$. So MIN will have 1 miss while LRU has k misses.
(b) Because in this case FIFO behaves the same way as LRU, so the competitive ratio will also be k.
