CS-174 Combinatorics & Discrete Probability, Fall 98

Sample Midterm 2
6:00-8:00pm, 18 November

Read these instructions carefully

1. This is a closed book exam. Calculators are permatted.

2. This muidterm consists of 10 questions. The first seven questions are multiple choice; the remaining three
require writlen answers.

3. Answer the multiple choice questions by circling the correct answer (or the best answer if more than one
is correct). You should be able to answer all of these from memory, by inspection, or with a very small
calculation. Incorrect answers attract a negative score, so if you do not know the answer do not guess.

4. Write your answers to the other questions in the spaces provided. None of these questions requires a long
answer, so you should have enough space; if not, continue on the back of the page and state clearly that you
have done so. Show all your working.

5. The questions vary in difficulty: if you get stuck on some part of a question, leave it and go on to the
next one.

Let z be a random number less than k. The probability that =z is prime is (up to a small constant factor)
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Let X be a non-negative random variable.

(a) Markov’s inequality says that Pr[X > 3E (X)] is at most
1 1 E (X) 1

2
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(b) Chebyshev’s inequality says that Pr[|X — E (X) | > 3y/Var (X)] is at most
1 1 2 Var (X) 1

9 3 3 3 3Var (X)

You are given a randomized algorithm that always outputs either ‘yes’ or ‘no’. When it outputs ‘yes’, this
answer 1s always correct; when it outputs ‘no’, this answer is correct with probability at least %, where n is
the input size.

(a) The number of repeated trials of this algorithm you would have to perform in order to guarantee a

correct answer with probability at least 1 — % 1s about
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(b) Let T denote the answer to part (a). The number of repeated trials of the original algorithm you would
have to perform in order to guarantee a correct answer with probability at least 1 — el% 1s about
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Let ¢ = (x1 V 22) A (23) A (22 V 24) be an input for MAXSAT. The expected number of clauses of ¢ that
are satisfied by a random assignment is exactly

1
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2 8 4 8
Let Xi,...,X, be independent, identically distributed random variables with expectation p and vari-

ance o2, and let S, = X; +---+ X,,. The Central Limit Theorem says that the distribution of one of the
following quantities approaches the standard normal distribution as n — co. Which one?

Sp — p Sp — np Sp — np Sp — np Sp — np
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A fair coin is tossed n times, where n is large. With probability about %, the proportion of heads obtained
will deviate from the expected value % by less than

1 1
2Inn 2y/n 2n 2n

a constant

Let A be a 2-universal family of hash functions from a universe U to a table T'. Let z,y € U such that
z # y. The number of functions A € H for which h(z) = h(y) is at most:
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Finding a group of strangers

Consider a group of n people. Suppose that the total number of acquaintanceships in the group (i.e., pairs
of people who know each other) is 2n. We may model this situation as an undirected graph G = (V, E), in
which the vertices are people and we draw an edge between two people if and only if they know each other.
The total number of edges is 2n.

In this problem, our aim is to find a fairly large group of people all of whom are strangers. Such a group of
people is called an independent set.

(a) Suppose we construct a random subset S of people as follows: for each person in the entire group, we
independently flip a coin with heads probability %; if it comes up heads, we put the person in S. What is
the value of E (]S])7

(b) Let the r.v. X denote the number of edges inside the set S (i.e., edges of G that connect pairs of people
in S). What is the value of E(X)? [Hint: Consider each edge e of GG separately; what is the probability
that both endpoints of e belong to S7]

(¢) Now for each edge e inside S, choose an endpoint of e arbitrarily and remove it (if it hasn’t been
removed already). Let S be the set of remaining vertices. Obviously S’ must be an independent set (you

should check that you understand why). Use parts (a) and (b) to deduce that E (|S]) > %.

(d) Deduce from parts (a), (b) and (c) that there must exist an independent set of at least % people in the
original group.

L

15, finds an independent set of

e) Give an efficient randomized algorithm that, with probability at least
g
at least {5 people. Justify the success probability of your algorithm.

[continued overleaf]



A threshold for isolated vertices
Let G be a random graph in the G, , model with p < % A vertex v of (G 1s said to be isolated if it is not

Inn ¢ a threshold value for

connected to any other vertex of . In this problem, we will show that p =
the existence of an isolated vertex in G;ie.,if p <K IHT” then Pr[G contains an isolated vertex] — 1, and

if p > B2 then Pr[G contains an isolated vertex] — 0.

(a) For a given vertex v, what is Pr[v is isolated] as a function of n and p?

(b) Let the r.v. X be the number of isolated vertices in G. What is the value of E (X), as a function of n
and p?

(¢) Show that if p > IHT” then E(X) — 0 as n — oo. [Hint: Show that InE (X) — —oco using the fact
that In(1 —2) < —z forall z € [0,1].]

(d) Show that if p < 22 then E(X) — oo as n — oco. [Hint: Show that InE (X) — oo using the fact
that In(1 —z) > =2z for all z € [0,3]]

(e) Deduce from part (c) that, if p > 2 then Pr[G contains an isolated vertex] — 0 as n — co.

(f) Now assume that ‘éjg(())i)

deduce that in this case Pr[G contains an isolated vertex] — 1 as n — oo.

— 0 as n — oo when p < 22 Use Chebyshev’s inequality and part (d) to

n

(f) [Extra Credit Only: answer on back] Prove the fact that was assumed in part (e), i.e., prove that
\éa(rT())g)%Oasn—)oowhenp<<m—”

n "
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10.

Testing equality of multisets

Let X = {a1,...,2,} and Y = {y1,...,yn} be multisets over the universe U = {0,...,m— 1}, i.e., each
of X and Y consists of n not necessarily distinct elements of U, given in some arbitrary order. Suppose
we want to test whether X = Y, in the sense that X and Y both contain exactly equal numbers of all
elements in U. Clearly this problem can be solved in time O(nlogn) by sorting the members of X and ¥
and then comparing them. Here we investigate a more efficient randomized algorithm.

(a) By considering the polynomial Qx(z) = (¢ — 21)(z — 22)...(# — z,) (and a similar polynomial Qy ()
for V), design a randomized algorithm based on the Schwartz-Zippel technique for testing whether X = Y.
Your algorithm should always output “yes” when X = Y and should output “no” with probability at
least % when X # Y. You should specify the values of all quantities used in your algorithm (in terms of n).

(b) Assuming that each arithmetic operation can be performed in constant time, what is the running time
of your algorithm as a function of n?

(¢) The assumption of part (b) is only justified if the integers that appear during your computation are
fairly small. How would you modify your algorithm to ensure that the number of bits required to perform
the computation is only O(logn + loglogm), at the cost of a small additional probability of error? Justify
your answer with a rough calculation.



