
CS 174, Fall, 05, Steiger 
 
Instructions: Do all your work in the blue exam books. Please write your answers IN 
THE GIVEN ORDER, though you may solve problems in any order. There is no need to 
reduce answers to simplest terms. You may use one page of prepared notes, but all work 
must be your own. Show ALL your work. You will get little or no credit for an 
unexplained answer. The value of each question appears in parentheses. Use this as a 
guide in allocating your time. There are 80 points, and you have 80 minutes. 
 
1. (10 pts) This question concerns Karger’s basic min-cut algorithm (ALG 0): We start 
with a connected graph G = (V,E) having n vertices and m _ n − 1 undirected edges (each 
of weight one). While our (multi)graph has more than 2 vertices we contract a randomly 
chosen edge (deleting any loops). At the end we output the remaining edges that join the 
final two vertices; they are a cut in the original G. In this problem G is a cycle of length 
n−1 plus a single edge attached to it (so G has n vertices and edges which we take as v1v2, 
v2v3, . . . , vn−2vn−1, vn−1v1 and v1vn). 
(a) Draw G. Identify all min-cuts of G. What is the probability that the first edge selected 
by the algorithm is NOT in a min cut? 
(b) What is the probability that ALG 0 will find a min-cut? Explain your answer (you 
should describe how G contracts to the final min-cut during a successful contraction 
sequence, showing the last two contraction steps). Can you think of a connected graph 
with n vertices on which the algorithm is certain to find a min cut? 
 
2. (30 pts) X and Y are random variables on the same probability space. X has mean E(X) 
= 2, variance V (X) = 9, and P(X > 10) = 0. Y has mean E(Y ) = 3, and E(XY ) = 6. For 
each of the following statements, decide whether it is TRUE or FALSE (“TRUE” means 
that the statement must always be true for random variables satisfying the given 
conditions). If you say TRUE, give a convincing reason. If you say FALSE, give a 
counter-example. 
(a) P(Y = 3) < 1 
(b) P(X ≥ 1) ≥ 1/10 
(c) V (X + Y) = 9 + V (Y ) 
(d) P(X ≥ 8) ≤ 1/4 
(e) P(X ≥ 5) ≤ 2/5 
(f) X and Y are independent. 
 
3. (20 pts) This question deals with random permutations. The probability space is S = {π 
= (π1 < · · · <πk)} of permutations of 1, . . . , n under equally likely  probability. Here n = 
2k + 1 is odd. 
(a) Let A be the event that the first k elements of π are increasing (π1 < · · · <πk)? Find  
P(A) and explain how you did it. Next, explain in English how you would efficiently 
generate a permutation in A under equally likely probability. What is the running time of 
your algorithm? 
(b) Let B be the event that the last k +1 elements of π are decreasing (πk+1> · · · > π2k+1). 
Find P(B) and explain how you did it. Are A and B independent? Explain. 



(c) Let C be the event that π has two cycles, one of length k, and one of length k + 1, the 
odd numbers in one cycle and the even numbers in the other. Find P(C) and explain how 
you did it. 
(d) Let D be the event that even and odd values alternate (if π i is even then π i+1 is odd, 
and vice-versa, all i < n. Find the probability of D and explain how you did it. 
 
4. (5 pts) n balls are placed in n bins at random, each outcome equally likely. Let A be the 
event that there are exactly three empty boxes, and NO box has more than two balls. Find 
the probability of A and explain how you did it. 
 
5. (15 pts) Given a set S of n = 4k real inputs ai, i = 1 . . . , n, all distinct, the task is to 
return an element x in S that is in the top quarter; i.e., the returned value x must be bigger 
than at least 3k elements of S. An obvious algorithm is to take ANY 3k +1 elements of S 
and return their maximum. The cost is 3k (= .75n) comparisons. Carefully describe a 
probabilistic algorithm for this task which has running time o(n) as n ! 1 and which 
returns a correct answer with probability at least 1 − ε", where "ε > 0 is a given constant 
(the faster the algorithm, the better). Make it clear what the running time of your 
algorithm is (measured in terms of (i) the number of comparisons and (ii) the number of 
calls to UNIF). [(*) If you wish, and if you have extra time, comment on the possibility of 
a better deterministic algorithm - no penalty if you don’t] 
 


