CS174, Fall, 2004, Midterm 1, Professor Richard M. Karp

1. Consider two boxes, the first containing one black and one white marble, and the second containing two black and one white marble. A box is selected at random and a marble is drawn from it at random. Given that the marble is white what is the probability that the first box was selected?
2. In a permutation $\pi=(\pi(1), \pi(2), \ldots, \pi(\mathrm{n}))$, index i is called a cumulative maximum if $\pi(i)=\max (\pi(1), \pi(2), \ldots, \pi(i))$. What is the expected number of cumulative maxima in a random permutation of $\{1,2, \ldots, \mathrm{n}\}$? Hint: What is the probability that $\pi(i)$ is cumulative maximum?
3. Let E and F be independent events in a finite sample space containing n equally likely points. If $|\mathrm{E} \cap \mathrm{F}|=8,|\mathrm{E} \cap \overline{\mathrm{F}}|=6$, and $|\overline{\mathrm{E}} \cap \mathrm{F}|=12$, what is n ?
4. The nonnegative integer-valued random variable X has expectation 500 and variance 100. What does Markov's Inequality imply about the probability that X ≥ 1000 ? What does Chebyshev's inequality imply about the probability that X lies in the interval $[401,599]$?
 constant. What are the expectation and variance of X ?
5. Let X and Y be independent random variables.

Prove: $\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
7. Let the random variable X be the sum of n indicator random variables X_{i} (an indicator random variable, also known as a Bernoulli random variable, assumes only the values zero and one). The X_{i} need not be independent.
(a) Using linearity of expectation, prove that $E\left[X^{2}\right]=\Sigma_{\mathrm{i}=1 \text { to } \mathrm{n}} E\left[X_{i} X\right]$.
(b) Using the conditional expectation identity, prove that

$$
E\left[X^{2}\right]=\Sigma_{\mathrm{i}=1 \text { to } \mathrm{n}} \operatorname{Pr}\left(X_{i}=1\right) E\left[X \mid X_{i}=1\right] .
$$

