Problem 1. (30 points)

a. Describe in words the language accepted by the following NFA:

- **b.** Write a regular expression that accepts the same language. (You need not justify how you obtain the expression.)
- c. Determinize the automaton using the subset construction. (Label each DFA state with the corresponding set of NFA states).

Problem 2. (30 points)

a. The function f on regular expressions is defined inductively:

 $f(\emptyset) = \infty$ $f(a) = 1 \text{ for all } a \in \Sigma$ $f(R_1 \cup R_2) = \min(f(R_1), f(R_2))$ $f(R_1 \circ R_2) = f(R_1) + f(R_2)$ $f(R^*) = 0$

Given a regular expression R, what does f(R) compute?

b. Write an inductive function g so that g(R) computes the set of all first letters of strings in the language L(R). For example,

$$g((a \cup bc)^*d) = \{a, b, d\}.$$

(You may use f in the definition of g.)

c. If R is a regular expression with n symbols, how expensive is the computation of f(R) in O-notation? (Give a brief justification for your answer.)

Problem 3. (30 points)

For two strings $x, y \in \Sigma^*$, we write x # y for the string that alternates letters from x with letters from y:

 $\begin{array}{l} x \ \# \ \varepsilon \ = \ x \\ \varepsilon \ \# \ y \ = \ y \\ ax \ \# \ by \ = \ ab(x \ \# \ y) \quad \text{for all } a, b \in \Sigma. \end{array}$

For example,

cal # bears = cbaelars.

For two languages $A, B \subseteq \Sigma^*$, let

 $A \# B = \{ x \# y \mid x \in A \text{ and } y \in B \}.$

Given a finite automaton $(Q_A, \Sigma, \delta_A, q_A, F_A)$ that accepts A, and a finite automaton $(Q_B, \Sigma, \delta_B, q_B, F_B)$ that accepts B, construct a finite automaton that accepts A # B. (You need not justify your construction.)

Problem 4. (30 points)

For a string $x \in \Sigma^*$, we write [x] for the set of all anagrams of x (an anagram is a rearrangement of the letters of a word). For example,

 $[cal] = \{cal, cla, acl, alc, lca, lac\}.$

For a language $A \subseteq \Sigma^*$, let

 $[A] = \{ x \mid x \in [y] \text{ for some } y \in A \}.$

a. Find two regular languages B and C such that $[B] \cap C = \{0^n 1^n \mid n \ge 0\}$.

b. Use the pumping lemma to show that the language [B] is not regular.

Problem 5. (30 points)

Consider the language $A_k = (\mathbf{0} \cup \mathbf{1})^* \mathbf{0} (\mathbf{0} \cup \mathbf{1})^{k-1}$, where $k \ge 1$ is an arbitrary integer.

- **a.** Describe an NFA with k + 1 states that accepts A_k .
- **b.** Find 2^k strings in $\{0, 1\}^*$ such that no two of the strings are A_k -equivalent. (Justify your answer.)
- **c.** What can you conclude about the number of states of any DFA that accepts A_k ? (Justify your answer.)