Each of the following questions counts equally. Try to keep your answers succinct.

Pumping Lemma:

If \(L \) is regular then

\[
(\exists n)(\forall z \in L, |z| \geq n)(\exists uvw \text{ such that } z = uvw \text{ and } |uv| \leq n \text{ and } |v| \geq 1)(\forall i): uv^iw \in L.
\]

1. Let language \(L \) be given by the regular expression \(10^*1 \).
 (a) Construct a DFA accepting \(L \).
 (b) Construct a DFA accepting \(\overline{L} \).
 (c) Construct a regular expression for \(\overline{L} \). If your expression is complicated, you should be able to give a succinct overview in English to convince me that your expression is correct.

2. We wish to prove that \(L = \{0^i1^j : \gcd(i, j) = 1\} \) is not regular. Recall that \(\gcd(i, j) = 1 \) if \(i \) and \(j \) have no factors in common. So, \(0^{10}1^3 \in L, 0^{5}1^5 \not\in L \) and \(0^{6}1^{10} \not\in L \). Here are three “proofs” that \(L \) is not regular; one correct. Identify the correct proof with a \(\star \), and succinctly explain what is wrong with the other two proofs. (Hint: The incorrect proofs use the pumping lemma wrong — nothing is wrong with the algebra.)

 (a) It suffices to show that \(\overline{L} \) is not regular. Fix \(n \) in the pumping lemma. If \(z = 0^n1^p \in \overline{L} \) for prime \(p > n + 1 \) and let \(z = uvw \) as in the lemma. No matter what \(uvw, uv = 0^n1^p \) for some \(1 < l < p \) and \(\gcd(l, p) = 1 \).

 So \(uv \not\in L \) and \(\overline{L} \) is not regular.

 (b) Fix \(n \) in the pumping lemma. Note that consecutive numbers above 1 cannot have a common factor. So the string \(z = 0^{2n+1}1^{2n} \in L \). Choose \(z = uvw \) as in the lemma, where \(v = 0^l \) for \(l \) odd. \(uv = 0^{2n+1}1^{2n} \not\in L \) since both \(2n + 1 - l \) and \(2n \) are divisible by 2. Hence \(L \) is not regular.

 (c) Fix \(n \) in the pumping lemma. Without loss of generality, \(n \geq 2 \). Choose \(z = 0^n1^n \not\in L \) and fix \(z = uvw \). Now \(v \) must be of the form \(0^l, 1 \leq l \leq n \). Then \(uv^{n+1}w = 0^{n+ln}1^n \not\in L \) since both \(n + ln \) and \(n \) are divisible by \(n \). Hence, \(L \) is not regular.