
U.C. Berkeley — CS172: Computability and Complexity Midterm 2 Solutions
David Richerby 12th April, 2016

Midterm 2 Solutions

Important note. This exam was a good deal harder than I’d intended it to be. The mean mark
was around 45% and only one student scored above 70%.

Grading notes. In all cases, full marks for any correct solution. Subtract 2 marks for mistakes
that aren’t too big and don’t affect the overall solution.

Question 1

The key point here about the language L is that, if 〈M〉 ∈ L, then whenever M halts, it correctly
tells you whether its input is in HALT.

a) We reduce the halting problem to L as follows. Given a string x, let Mx be the Turing machine
that accepts x and loops for all other inputs. This machine clearly exists and a description of it
can be computed from x.

Now, let T be any Turing machine and let w be an input. M〈T 〉w approximates the halting
problem if, and only if, T halts on input w (since it accepts 〈T 〉w, so T (w) must halt; it loops for
all other inputs so says nothing about their halting behaviour). Therefore, 〈T 〉w ∈ HALT if and
only if M〈T 〉w ∈ L.

Grading notes. Score around 8 for a reasonable attempt. Subtract 3 marks if the answer assumes
that a machine that loops on all inputs is not in L. Subtract 1 mark for describing the reduction
as being to, e.g., HALT when it’s actually from it.

Comments. Several students tried to do a reduction by converting 〈M〉w to 〈Mw〉, where Mw is
the TM that deletes its input, replaces it with w, and then acts like M . This usually doesn’t work
because it produces a machine that either accepts every input, rejects every input, or loops on
every input. The only TM in L that has this property is the machine that loops for every input,
which is in L because it never gives a false answer to the halting problem, because it never gives
any answer at all. Thus, the only way that I can see to use Mw is to reduce HALT to L using the
fact that Mw ∈ L if, and only if, M does not halt on w. In fact, reducing HALT to L would also
prove non-semi-decidability for part b).

b) Similarly reduce HALT to L. To do this, we let Mx be the machine that rejects x and loops on
any input different from x. Now, consider a string x. x ∈ HALT if, and only if either x is not of the
form 〈T 〉w or x = 〈T 〉w for some Turing machine T that loops on input w. The second case occurs
if, and only if, M〈T 〉w ∈ L. HALT is not semi-decidable by Corollary 42, so L is not semi-decidable
by Lemma 46.

1

Alternatively, we can reduce HALT∀ to L as follows. Given an encoding 〈M〉 of a Turing
machine, we can produce a machine PM that accepts every input beginning with 〈M〉 (i.e., every
input 〈M〉w for some w) and loops on every other input. Now, PM ∈ L if, and only if, M halts for
every input. HALT∀ is not semi-decidable, as (I think) was stated in class.

Grading notes. “Yes”/”No” is not enough: some justification is required to get marks. 5 marks
if an intuitive explanation (along the lines of needing to check that the maching has the right
behaviour on infinitely many inputs before you can say that 〈M〉 ∈ L) but a proper proof is what
we’re looking for.

Question 2

a) Consider a string xy and let 〈M〉v and 〈N〉w be shortest representations of x and y. We can
give a representation of xy informally as follows: “Compute the output of M(v) and append the
output of N(w) to that.” We want a Turing machine T that takes 〈M〉v and 〈N〉w and outputs
M(v)N(w) but, to do this, we need to know when 〈M〉v ends and 〈N〉w begins. Observe that
|〈M〉v| ≤ |x| + k for some constant k. We can specify this in log(|x| + k) bits but now we have
the same problem: we don’t know when this number ends and 〈M〉v begins! But we can deal with
this by, e.g., writing log |〈M〉v| 0s, followed by a 1, followed by |〈M〉v|: this tells the machine how
many bits the number takes.

It follows that there is a Turing machine T such that 〈T 〉0log |〈M〉v|1bin(|〈M〉v|)〈M〉v〈N〉w is a
representation of xy. This has length at most

|〈T 〉|+ 2 log(|xy|+ k) + 1 + K(x) + K(y)

≤ |〈T 〉|+ 2 log |xy|+ 2 log k + 1 + K(x) + K(y)

= K(x) + K(y) + 2 log |xy|+ c ,

for some constant c. The inequality uses the fact that, for a, b ≥ 1, log(a+b) ≤ log(ab) = log a+log b.

Grading notes. 5 marks for recognizing the basic idea, which is “concatenate the representa-
tions”; 2 marks for recognizing that you need to know where the representation of x ends and the
representation of y begins; 3 marks for recognizing that log-something bits is relevant to that. For
more than 10 marks, it’s necessary to take the log of the right thing and show why that’s useful.

Comments. Several students tried to say that, if rx is a representation of x and ry is a repre-
sentation of y, then rx#ry is a representation of xy. This supposes that # cannot appear within
rx or ry since, if they did, how would we know which of the #s in rx#ry was the delimiter? But,
if # cannot appear in the representation of x or y, why should it be allowed in the representation
of xy? To avoid these problems, we insist that all representations be binary strings. (I suppose you
could get around the problem by using up to 2 log |xy| bits to encode the number of #s in rx but,
if you’re going to do that, you may as well just encode |rx|.)

b) If v is a substring of x, we can write x = uvw which we can consider to be the concatenation of

2

uv and w. By part a), we have

|x| ≤ K(x) ≤ K(uv) + K(w) + 2 log |uvw|+ c1

≤ K(u) + K(v) + 2 log |uv|+ c1 + K(w) + 2 log |uvw|+ c1

≤ |u|+ |w|+ K(v) + 2 log |uv|+ 2 log |uvw|+ c

≤ |x| − |v|+ K(v) + 4 log |x|+ c ,

for some constant c, so K(v) ≥ |v| − 4 log |x| − c.

Grading notes. Similar grading to part a). It’s fine to assume the result from that part, even if
it wasn’t successfully proved. Quite a few people tried to do this by contradiction (“Assume that,
for some substring v, K(v) < |v| − 4 log |x| − c. Then, ...”). This doesn’t seem to work, probably
because it commits to a particular value of c too early, but a decent attempt at this will score most
of the marks.

Question 3

a) If P = NP, then every language in P (i.e., in NP), except for ∅ and Σ∗, is NP-complete. Let
Y be any language in NP \ {∅,Σ∗}. We can choose strings win ∈ Y and wout /∈ Y and reduce any
language X ∈ NP to Y using the function

f(w) =

{
win if w ∈ X

wout if w /∈ X .

This function can be computed in polynomial time because we can determine whether w ∈ X or
not in polynomial time by the assumption that P = NP. Neither ∅ nor Σ∗ can be NP-complete
because the definition a function f being a many-one reduction from a language X to ∅ requires
that, for any w ∈ X, f(w) ∈ ∅, which cannot happen for X 6= ∅.

Comments. win and wout are fixed constants and we don’t need to compute them every time
we compute f : they would be “hard-coded” into the Turing machine that computes the reduction.
Note that, if Y = ∅ then win does not exist and, if Y = Σ∗, then wout does not exist.

Grading notes. The answer given is more detailed than necessary; it’s enough to say something
like “Every language in P [or NP] except for ∅ and Σ∗ would be NP-complete because we could
solve the problem in the reduction.” Subtract 1 mark for missing the exception for ∅ and Σ∗;
subtract 2 marks for no justification. “Every P-complete language would be NP-complete” isn’t
an answer: it’s just a tautology.

b) First, we show that VertexCover ∈ NP. This follows because a vertex cover is a succinct
certificate. A vertex cover can have at most |V (G)| vertices and, given a set v1, . . . , v` of vertices,
we can check deterministically in polynomial time that ` ≤ k and that every edge has at least one
of the given vertices as an endpoint.

Now, we prove NP-completeness. Suppose that S is a vertex cover of a graph G = (V,E).
Then every edge must have at least one endpoint in S, so no edge has both endpoints in V \ S, so

3

V \S is an independent set. It follows that G has a vertex cover of size at most k if, and only if, it
has an independent set of size at least |V | − k. We reduce IndSet to VertexCover by mapping
input G, k to G, |V | − k.

Grading notes. 3 marks for proving membership in NP. 6 marks for describing any correct
reduction and 6 marks for proving that it works. If the reduction doesn’t work, around 6 marks if
it’s at least plausible and a there’s a reasonable attempt at a proof. Note that a bare statement
such as “Reduce from IndSet” is not enough: since VertexCover really is NP-complete, there
is a reduction to it from every problem in NP by definition.

Comments. For this part and the following part, it’s crucial to reduce some NP-complete lan-
guage to the problem in the question. Reducing VertexCover to, say, Sat only establishes that
VertexCover ∈ NP. (“If I could solve this hard problem, I could solve VertexCover” isn’t nearly
as strong a statement as “If I could solve VertexCover, I could solve this hard problem.”)

c) We show that the problem is in NP by showing a succinct certificate. It can’t be necessary to
remove more than |V (G)| vertices and, given vertices v1, . . . , v`, we check that ` < k and then use
depth-first search to check deterministically in polynomial time that deleting those vertices leaves
a graph with no directed cycles.

We now reduce from VertexCover to this problem. Given an undirected graph G = (V,E),
we produce the directed graph G′ = (V,E′) by replacing every undirected edge xy with the 2-cycle
consisting of directed edges (x, y) and (y, x). If G has a vertex cover S of size at most k, then
deleting these vertices from G removes all edges from G. Similarly, deleting the same vertices
from G′ removes all edges and, hence, all directed cycles from G′. Conversely, if G has no vertex
cover of size at most k, then deleting any k vertices from G must leave at least one edge, so deleting
the same set of vertices from G must leave at least one 2-cycle.

Grading notes. Same as part b). For membership in NP, it’s necessary to give at least a brief
description of how you’d check in polynomial time that a graph is acyclic (something like “by DFS”
is enough).

Comments. This problem is known as FeedbackVertexSet. It’s tempting to try to reduce
from HamiltonianCycle but this is unlikely to get anywhere: typically, the only problems that
have easy reductions from HamiltonianCycle are problems about visiting every vertex of a graph.
It’s possible for a graph to have many short cycles but no Hamiltonian cycle so it’s not obvious
how to use that here.

4

