
U.C. Berkeley — CS172: Computability and Complexity Midterm 1 Solutions
David Richerby 25th February, 2016

Midterm 1 Solutions

Question 1

The automaton Mk for Lk is given by Mk = (Q, {0, 1}, δ, q0, A), where

Q = {q0, . . . , qk}
A = {q0, . . . , qk−1} ,

and δ is defined as

δ(qi, 0) = q0 for 0 ≤ i < k

δ(qi, 1) = qi+1 for 0 ≤ i ≤ k
δ(qk, x) = qk for x ∈ {0, 1} .

For 0 ≤ i < k, the automaton is in state qi when it has read exactly i 1s since the last 0 (or the
start of the input if no 0s have been read so far); the automaton is in state qk if it has, at some
point, read k consecutive 1s. In this last case, it rejects; otherwise, it accepts.

Grading notes. 10 marks for a correct automaton; 6/10 if the automaton accepts the complement
of the required language. Drop 2 marks if no start state is indicated. If the automaton is close to
correct, drop 1 mark for each edge that needs to be changed. A state diagram or description of the
automaton in words is fine, as long as it’s precise enough to indicate exactly what the automaton
is.

We give three alternative proofs that the automaton is minimal. (Only one proof is needed.)

1. We demonstrate a set of k + 1 pairwise distinguishable strings, namely the strings strings 1i

for 0 ≤ i ≤ k (where 10 = ε). To see that 1i 6≈Lk
1j when 0 ≤ i < j ≤ k, consider the string

1k−i−1. We have 1i1k−i−1 = 1k−1 ∈ Lk but 1j1k−i−1 /∈ Lk since j + k− i− 1 ≥ k. Hence, the
set {1i | 0 ≤ i ≤ k} is a set of k + 1 pairwise distinguishable strings, so any automaton that
accepts Lk must have at least k + 1 states by Myhill–Nerode.

2. We show that none of the states of Mk are equivalent to each other. The simplest way to
do this is to observe, as above, that, for 0 ≤ i < j ≤ k, qi 6≡ qj because reading the string
1k−i−1 from state qi leads to qk−1, which is accepting, but reading that string from state qj
leads to qk, which is rejecting. All states are inequivalent (i.e., the ≡-equivalence classes are
{q0}, . . . , {qk}), and the state diagram is connected, so the state minimization algorithm does
not reduce the number of states. Therefore, Mk is optimal.

1

3. We show that no states are equivalent to each other by constructing ≡ as the fixed point
of the relations ≡0,≡1, We claim that, for 0 ≤ i < k, the equivalence classes of ≡i are
{q0, . . . , qk−i−1}, {qk−i}, . . ., {qk}. If the claim is true then the equivalence classes of ≡ are
{q0}, . . . , {qk}. Since the state diagram of Mk is connected, the state minimization algorithm
does not reduce the number of states, so Mk is optimal.

We prove the claim by induction on i. For i = 0, the equivalence classes are the set of ac-
cepting states and the set of rejecting states, which are {q0, . . . , qk−0−1} and {qk}, as claimed.
Suppose that, for some i ∈ {0, . . . , k − 2}, the equivalence classes of qi are {q0, . . . , qk−i−1},
{qk−i}, . . ., {qk}. Then {qk−i}, . . . , {qk} are also equivalence classes of ≡i+1. For any
p, q ∈ {q0, . . . , qk−(i+1)−1}, we have p ≡i q and, for a ∈ {0, 1}, we have δ(p, a), δ(q, a) ∈
{q0, . . . , qk−i−1}, so δ(p, a) ≡i δ(q, a). Therefore, p ≡i+1 q. However, we have δ(qk−(i+1), 1) =
qk−1 6≡i p. So the remaining equivalence classes of≡i+1 are {q0, . . . , qk−(i+1)−1} and {qk−(i+1)}.
This completes the proof of the claim.

Grading notes. 15 marks for a correct proof, either using ≈, or ≡, or the relations ≡i. If the
automaton in the first part of the question was incorrect, give full marks for a correct proof that
it is minimal for whatever language it accepts, or for a correct proof that any DFA accepting Lk

needs at least k + 1 states.
For the proof with ≈, drop 5 marks if the answer does not include a set of k+ 1 strings that are

pairwise distinguishable (either because of the wrong number of strings or because some of them
are indistinguishable). Drop 5 marks if the set of indistinguishable strings are not shown to be
indistinguishable (i.e., it should be demonstrated that, for all u, v in the set, there is some w such
that uw ∈ Lk and vw /∈ Lk, or vice-versa). Drop 2 marks if the significance of having k+1 pairwise
distinguishable strings is not mentioned (it’s not necessary to mention Myhill–Nerode by name but
it should at least be stated that a minimum automaton must have at least as many states as there
are distinguishable strings).

For the proof with ≡, drop 5 marks if the answer does not claim that all the states are inequiva-
lent (e.g., by saying that or by listing the equivalence classes). Drop 5 marks if it doesn’t exhibit a
string showing this for each pair. Drop 2 marks if the significance of all the states being inequivalent
is not explained (i.e., the state reduction algorithm doesn’t reduce the number of states).

For the proof with the ≡i, drop 5 marks if the answer doesn’t state what the equivalence classes
are for each i (either explicitly or with a clear enough dot-dot-dot). Drop 5 marks if the construction
of the successive relations ≡i is not justified. (It is not required to set out the induction formally as
I have done.) Drop 2 marks if the significance of all the states being inequivalent is not explained.

Question 2

Suppose L is decided by some machine M . We can enumerate L in lexicographic order as follows.
First, write # to the output tape. Then, generate all binary strings s1, s2, . . . in lexicographic order.
For each i in turn, simulate M on si and, if M accepts, add si# to the enumeration. Every string
w ∈ L will eventually appear in the enumeration because there are only finitely many simulations
to perform before the simulation on w, and M is a decider so each of these simulations terminates.

Conversely, suppose that L is enumerated in lexicographic order by some machine M . To decide
whether a string w is in L, work as follows. Simulate M . If w ∈ L, then M will eventually write
#w# to its output tape, at which point we accept w. If w /∈ L then, since L is infinite, it contains

2

infinitely many strings w′ > w. As soon as M writes #w′# to its output tape, where w′ > w, we
know it will never write #w# (because it enumerates in order), so we can reject w. This decides L.

Grading notes. 10 marks for constructing the enumeration; 15 for the decider. The answer
must justify that the claimed enumerator really is an enumerator (every string in L is eventually
included in the enumeration) and how the decider halts for every input (when accepting, because
every string in L appears in the enumeration eventually; for rejecting, because there’s always a
bigger element that will appear).

Comment. If L wasn’t necessarily infinite, we’d need to be a little more careful. Suppose that
L = {0, 1}, we have an in-order enumerator and we want to decide if 00 ∈ L. Now we’re stuck
because the enumerator is entitled to write #0#1# and then loop forever, as long as it never
writes more output. There is no w ∈ L that is lexicographically greater than 00, so our decision
procedure, which involves waiting for such a string, will fail. The solution in this case is to observe
that, if L is finite, it’s definitely decidable so we may, in fact, assume L to be infinite. This gives
a non-constructive proof: it’s undecidable whether an enumerator outputs an infinite set (exercise:
prove this) so there’s no algorithm that will convert an in-order enumerator for a set into a decider
for that set.

Question 3

a) Let N = (Q,Σ,∆, q0, A) be a ∀FA. For any w ∈ Σ∗, w ∈ L(N) if N has at least one rejecting
computation. This computation could reject for one of two reasons: it could end in a rejecting state
of N , or it could end early because, at some point, the automaton gets “stuck” because it was in a
state q and read some symbol a for which ∆(q, a) = ∅. There are now two main ways to proceed.

1. Let qfail /∈ Q and consider the NFA N ′ = (Q ∪ {qfail},Σ,∆′, q0, (Q ∪ {qfail}) \A) where

∆′(q, a) =

{
qfail if q = qfail or ∆(q, a) = ∅
∆(q, a) otherwise.

By the definition of NFAs, N ′ accepts its input if, and only if, there is a sequence of transitions
to one of its accepting states. This happens if, and only if, N has a sequence of transitions
to one of its rejecting states or a sequence of transitions that gets “stuck”. But this exactly
describes the conditions under which N rejects its inputs.

Therefore, N accepts the complement of L(N), which means that L(N) is regular (proved in
class). Since the complement of a regular language is regular (proved in class), this means
that L(N) is regular.

2. We can use the powerset construction directly but, again, we must be careful about F getting
stuck. We directly construct a DFA M = (P(Q),Σ, δ, {q0}, A′). We set A′ = P(A) \ {∅} and

δ(S, a) =

{
∅ if ∆(q, a) = ∅ for some q ∈ S⋃

q∈S ∆(q, a) otherwise.

3

Note that δ(∅, a) =
⋃

q∈∅∆(q, a) = ∅, as you would expect.

Thus, the state of M represents the set of states that N “could” be in (as in the proof that
every NFA is equivalent to some DFA) except that if any possible computation of N “gets
stuck” after reading some part of the input, the state of the DFA will be ∅ from that point
on, and the DFA will reject, as required, since N has a non-accepting computation.

Note that we can’t just set δ(S, a) =
⋃

q∈S ∆(q, a), as in the NFA-to-DFA proof. That’s
because, as long as ∆(q, a) 6= ∅ for at least one q ∈ S, any q′ ∈ S for which ∆(q′, a) = ∅ will
be “forgotten about” when we take the union.

Grading notes. 40/40 for any correct proof. Subtract 10 marks if the answer doesn’t cope with
“short paths” in F .1 If the answer constructs or describes a DFA, subtract 5 marks for each of
the state space, transition function, start state and accepting states that are not clearly defined;
subtract 3 marks if a powerset construction is used but ∅ is accepting. Score around 10/40 if the
answer uses an invalid technique but still demonstrates knowledge of material taught in the course
(e.g., closure properties of regular languages).

b) Every regular language is accepted by some ∀FA because every DFA is a ∀FA: a DFA has exactly
one possible computation for each possible input and it accepts if all possible computations (i.e.,
that one computation) accepts, and rejects otherwise. Every regular language is accepted by some
DFA, so every regular language is accepted by some ∀FA.

Grading notes. 10/10 for any correct proof.

1This turned out to be everybody’s answer.

4

