
CS172, Spring 2001Midterm 2 solutionsThis midterm is open-book. There are 3 problems and 7 true/false questions. You have 80 minutes;the number of points assigned to ea
h problem re
e
ts the number of minutes expe
ted to be spent on it,so there's a total of 80 points. We are not looking for rigidly formal 
onstru
tion proofs unless otherwisespe
i�ed, but you should give suÆ
ient detail to demonstrate that you 
an make the ne
essary 
onstru
tionbased on 
onstru
tions presented in 
lass and/or in the textbook. Good lu
k!1. (20 pts) Show that, if P = NP , there would exist a polynomial time algorithm that, given a graph Gand a number k on input, outputs a simple path of length k in G if su
h a path exists.This problem requests that we �nd an algorithm that a
tually �nds a path of a 
ertain length (asopposed to just de
iding whether one exists, whi
h does not ne
essarily require �nding one). Thus,although we may note that the de
ision problem k-Path=fhG; kijG has a simple path of length kg is
learly in NP, sin
e a 
erti�
ate (the path itself) is easily veri�ed to be 
orre
t in polynomial time, andthus in P given the P=NP assumption, this is not suÆ
ient to obtain the algorithm requested. Rather,we want the algorithm to repeatedly use deterministi
 polytime de
iders for NP de
ision problems(whi
h exist by the assumption) to progressively dis
over the 
erti�
ate, part by part.De�ne the problem:k-Path-Head=fhG; k; v1; : : : ; vmijG has a simple path of length k whose �rst m verti
es are v1; : : : ; vmgwhi
h asks for the existen
e of a path with a spe
i�
 \head." Clearly, this problem is still in NP sin
ea path satisfying the 
onditions 
an still serve as a 
erti�
ate and be veri�ed qui
kly. By the P=NPassumption, this problem is also in P. Consider the following algorithm:
he
k whether hG; ki 2 k-Path and return ``no path'' if notpath=fgfor i=1 to kfor all verti
es v of G
he
k whether hG; k; pathi 2k-Path-Headif so, append v to path and skip to next ireturn pathSin
e the k-Path-Head de
ider is only 
alled kjGj times (and if k > jGj, the �rst line 
learly reje
ts),and the input to it is linear in the length of the original input, hG; ki, the above algorithm runs inpolynomial time. If there exist any paths of length k, the above algorithm is guaranteed to dis
over atleast one of them by 
ontinually �nding larger \heads" that are at the beginning of a valid k-path. �



2. We say that an undire
ted graph G = (V;E) with kn + 1 nodes is a \k-daisy" if there is a 
olle
tionof k \petals", P1; : : : ; Pn, su
h that:(1) 8i; Pi � V and jPij = n+ 1 (ea
h petal is a set of n+ 1 nodes)(2) 9
 2 V s.t. 8i 6= j; Pi \ Pj = f
g (there's a spe
i�
 vertex 
 shared by all petals)(3) 8i, there is a simple 
y
le in G through all verti
es of PiNote that the above 
onditions impli
itly for
e all verti
es in the graph other than 
 to be in
luded inexa
tly 1 petal (sin
e, in addition to 
, ea
h of the k petals has n other nodes that it doesn't share withany other petal, and there's a total of kn + 1 nodes). For instan
e, the following graph is a 3-daisy(with the 
y
les through the 3 petals highlighted):
a. (10 pts) Prove that the languageDaisy = fhG; kijthe graph G is a k-daisyg isNP -
omplete. Youmay not use the result from part (b).To see that Daisy is in NP, it is suÆ
ient to note that an assignment of the 
enter 
, the subsetsof verti
es P1; : : : ; Pk 
orresponding to the petals, and a path through ea
h petal 
omprise a
erti�
ate for the graph being a daisy that 
an be easily veri�ed in polynomial time. Now, toprove that Daisy is NP-
omplete, just note that a 1-daisy 
orresponds to the graph being a single\petal" with a 
y
le through all of its verti
es, i.e. a Hamiltonian 
y
le, and, 
onversely, a graphwith a Hamiltonian 
y
le is immediately a 1-daisy. Thus, a polytime redu
tion from Ham-Cy
leto Daisy may be obtained by using the fun
tion f(hGi) = hG; 1i. A similar redu
tion may alsobe obtained from UHamPath by adding a single extra \
enter" node to the graph.b. (12 pts) Prove that the language 5-Daisy = fhGijthe graph G is a 5-daisyg is NP -
omplete.5-Daisy is 
learly in NP by an argument similar to the one above { a 
ombination of the 
enter,the 5 petals, and the paths through them are veri�able in polytime. While there is no simpleredu
tion from Daisy to 5-Daisy, we 
an still redu
e from, for instan
e, UHamPath by adding\vestigial" verti
es. Given a graph G with k verti
es and desired-endpoint verti
es s and t, addan extra vertex 
 (
onne
ted to s and t), and 4 groups of k verti
es ea
h with just a 
y
le goingthrough ea
h of the 4 groups and 
:

cG
t

s

G
t

s

(The �gure assumes G has 7 verti
es). If there's an undire
ted Hamiltonian path through G froms to t, G 
learly forms 1 petal, and the other 4 groups form petals as well, making G a 5-daisy.Conversely, if G is a 5-daisy, it 
an be immediately seen that (1) none of the 4k new verti
es otherthan 
 
an be the 
enter, so that for
es 
 to be the 
enter, (2) thus ea
h of the 4 groups mustform a separate petal, (3) G must've formed the last petal, and there must thus be a u. ham.path through it, from s to t. Thus the above is a redu
tion from UHamPath to 5-Daisy. It ispolynomial time sin
e the input size is only in
reased by a 
onstant fa
tor, and the 
onversionpro
edure is trivially polytime.



3. De�ne L = fhMijM is a TM that a

epts at least 2 distin
t stringsg.a. (8 pts) Show that ATM is mapping-redu
ible to L.Given an input hM;wi to ATM , we 
onstru
t a ma
hine M 0 that ignores its own input, simulatesM on w, and a

epts i� M a

epted. If hM;wi 2 ATM , M a

epts w, so M 0 a

epts ��, andthus hM 0i 2 L. Conversely, if hM;wi 62 ATM , M does not a

ept w, so L(M 0) = ;, and thushM 0i 62 L. Therefore, f(hM;wi) = hM 0i is a mapping redu
tion. �b. (10 pts) Use the Re
ursion Theorem to show that L is unde
idable. You may not use your resultfrom part (a).Suppose a Turing ma
hine, D, de
ides L. Then 
onstru
t a new ma
hine as follows:M = Ignore inputObtain its own des
ription, hMi, via the Re
ursion TheoremRun D on MIf D a

epts, reje
tElse, a

eptSin
e D is a de
ider, the third step always terminates, and thus so does M . If hMi 2 L, it isa

epted by D and thus reje
ts all strings, so it 
an't be in L. On the other hand, if hMi 62 L,it's reje
ted by D and thus a

epts everything, putting it in L. This is a 
ontradi
tion, and thusneither M nor D 
an exist, so L is unde
idable. �
. (8 pts) Show that L is Turing-re
ognizable.Given a ma
hine M as input, we 
an re
ognize L by running M \on ��, and terminating anda

epting whenever we �nd 2 strings on whi
h M terminates and a

epts. Sin
e �� is in�nite,we implement this notion by ordering �� in some order (say lexi
ographi
), and run M for 1step on the 1st string, then for 1 step on the 1st and 2nd strings, and so on (produ
ing an\interleaving" pattern similar to that used in the 
lassi
al proof of the 
ountability of rationals).Clearly, whenever M terminates and a

epts after a 
ertain number of steps on some 2 strings,we'll eventually rea
h the right step on ea
h of those 2 strings, and a

ept as well; otherwise, we'llnever have a reason to terminate and a

ept. Thus this pro
edure re
ognizes L. �



4. (12 pts) True/False:True If Composite = fhNijN is a 
omposite integerg is not NP -
omplete, thenP 6= NP . If P = NP , all non-trivial problems in NP are NP -
omplete. So ifComposite isn't, we know P 6= NP .False If a fun
tion f : A! B is a mapping redu
tion from A to B and is one-to-one, thenB is mapping-redu
ible to A as well. We aren't guaranteed that f is invertible (wedon't know if it's onto). Counterexample: f0g �m ATM , but not vi
e versa.True If A and B are in NP , then so is A [B. We 
an 
reate a 
erti�
ate for w being inA [ B by providing either its 
erti�
ate as a member of A or of B, and indi
atingwhi
h one we're providing.False If A and B are NP -
omplete, then so is A \ B. 0 Æ SAT \ 1 Æ SAT = ;, whi
h isnot NP -
omplete.True CFL( P (where CFL is the 
lass of 
ontext-free languages). We know CFL � Psin
e we demonstrated an O(n3) universal parser for CFLs; 
learly, f0n1n2ng 2 P ,but it's not in CFL. Thus the in
lusion is proper.False The set of problems to whi
h ATM is mapping-redu
ible is un
ountable (note thatall su
h problems are ne
essarily unde
idable). A mapping redu
tion is a 
omputablefun
tion, whi
h is de�ned by a TM, and there's only a 
ountable number of distin
tTMs.


