
CS172, Spring 2001Midterm 2 solutionsThis midterm is open-book. There are 3 problems and 7 true/false questions. You have 80 minutes;the number of points assigned to eah problem reets the number of minutes expeted to be spent on it,so there's a total of 80 points. We are not looking for rigidly formal onstrution proofs unless otherwisespei�ed, but you should give suÆient detail to demonstrate that you an make the neessary onstrutionbased on onstrutions presented in lass and/or in the textbook. Good luk!1. (20 pts) Show that, if P = NP , there would exist a polynomial time algorithm that, given a graph Gand a number k on input, outputs a simple path of length k in G if suh a path exists.This problem requests that we �nd an algorithm that atually �nds a path of a ertain length (asopposed to just deiding whether one exists, whih does not neessarily require �nding one). Thus,although we may note that the deision problem k-Path=fhG; kijG has a simple path of length kg islearly in NP, sine a erti�ate (the path itself) is easily veri�ed to be orret in polynomial time, andthus in P given the P=NP assumption, this is not suÆient to obtain the algorithm requested. Rather,we want the algorithm to repeatedly use deterministi polytime deiders for NP deision problems(whih exist by the assumption) to progressively disover the erti�ate, part by part.De�ne the problem:k-Path-Head=fhG; k; v1; : : : ; vmijG has a simple path of length k whose �rst m verties are v1; : : : ; vmgwhih asks for the existene of a path with a spei� \head." Clearly, this problem is still in NP sinea path satisfying the onditions an still serve as a erti�ate and be veri�ed quikly. By the P=NPassumption, this problem is also in P. Consider the following algorithm:hek whether hG; ki 2 k-Path and return ``no path'' if notpath=fgfor i=1 to kfor all verties v of Ghek whether hG; k; pathi 2k-Path-Headif so, append v to path and skip to next ireturn pathSine the k-Path-Head deider is only alled kjGj times (and if k > jGj, the �rst line learly rejets),and the input to it is linear in the length of the original input, hG; ki, the above algorithm runs inpolynomial time. If there exist any paths of length k, the above algorithm is guaranteed to disover atleast one of them by ontinually �nding larger \heads" that are at the beginning of a valid k-path. �



2. We say that an undireted graph G = (V;E) with kn + 1 nodes is a \k-daisy" if there is a olletionof k \petals", P1; : : : ; Pn, suh that:(1) 8i; Pi � V and jPij = n+ 1 (eah petal is a set of n+ 1 nodes)(2) 9 2 V s.t. 8i 6= j; Pi \ Pj = fg (there's a spei� vertex  shared by all petals)(3) 8i, there is a simple yle in G through all verties of PiNote that the above onditions impliitly fore all verties in the graph other than  to be inluded inexatly 1 petal (sine, in addition to , eah of the k petals has n other nodes that it doesn't share withany other petal, and there's a total of kn + 1 nodes). For instane, the following graph is a 3-daisy(with the yles through the 3 petals highlighted):
a. (10 pts) Prove that the languageDaisy = fhG; kijthe graph G is a k-daisyg isNP -omplete. Youmay not use the result from part (b).To see that Daisy is in NP, it is suÆient to note that an assignment of the enter , the subsetsof verties P1; : : : ; Pk orresponding to the petals, and a path through eah petal omprise aerti�ate for the graph being a daisy that an be easily veri�ed in polynomial time. Now, toprove that Daisy is NP-omplete, just note that a 1-daisy orresponds to the graph being a single\petal" with a yle through all of its verties, i.e. a Hamiltonian yle, and, onversely, a graphwith a Hamiltonian yle is immediately a 1-daisy. Thus, a polytime redution from Ham-Cyleto Daisy may be obtained by using the funtion f(hGi) = hG; 1i. A similar redution may alsobe obtained from UHamPath by adding a single extra \enter" node to the graph.b. (12 pts) Prove that the language 5-Daisy = fhGijthe graph G is a 5-daisyg is NP -omplete.5-Daisy is learly in NP by an argument similar to the one above { a ombination of the enter,the 5 petals, and the paths through them are veri�able in polytime. While there is no simpleredution from Daisy to 5-Daisy, we an still redue from, for instane, UHamPath by adding\vestigial" verties. Given a graph G with k verties and desired-endpoint verties s and t, addan extra vertex  (onneted to s and t), and 4 groups of k verties eah with just a yle goingthrough eah of the 4 groups and :
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(The �gure assumes G has 7 verties). If there's an undireted Hamiltonian path through G froms to t, G learly forms 1 petal, and the other 4 groups form petals as well, making G a 5-daisy.Conversely, if G is a 5-daisy, it an be immediately seen that (1) none of the 4k new verties otherthan  an be the enter, so that fores  to be the enter, (2) thus eah of the 4 groups mustform a separate petal, (3) G must've formed the last petal, and there must thus be a u. ham.path through it, from s to t. Thus the above is a redution from UHamPath to 5-Daisy. It ispolynomial time sine the input size is only inreased by a onstant fator, and the onversionproedure is trivially polytime.



3. De�ne L = fhMijM is a TM that aepts at least 2 distint stringsg.a. (8 pts) Show that ATM is mapping-reduible to L.Given an input hM;wi to ATM , we onstrut a mahine M 0 that ignores its own input, simulatesM on w, and aepts i� M aepted. If hM;wi 2 ATM , M aepts w, so M 0 aepts ��, andthus hM 0i 2 L. Conversely, if hM;wi 62 ATM , M does not aept w, so L(M 0) = ;, and thushM 0i 62 L. Therefore, f(hM;wi) = hM 0i is a mapping redution. �b. (10 pts) Use the Reursion Theorem to show that L is undeidable. You may not use your resultfrom part (a).Suppose a Turing mahine, D, deides L. Then onstrut a new mahine as follows:M = Ignore inputObtain its own desription, hMi, via the Reursion TheoremRun D on MIf D aepts, rejetElse, aeptSine D is a deider, the third step always terminates, and thus so does M . If hMi 2 L, it isaepted by D and thus rejets all strings, so it an't be in L. On the other hand, if hMi 62 L,it's rejeted by D and thus aepts everything, putting it in L. This is a ontradition, and thusneither M nor D an exist, so L is undeidable. �. (8 pts) Show that L is Turing-reognizable.Given a mahine M as input, we an reognize L by running M \on ��, and terminating andaepting whenever we �nd 2 strings on whih M terminates and aepts. Sine �� is in�nite,we implement this notion by ordering �� in some order (say lexiographi), and run M for 1step on the 1st string, then for 1 step on the 1st and 2nd strings, and so on (produing an\interleaving" pattern similar to that used in the lassial proof of the ountability of rationals).Clearly, whenever M terminates and aepts after a ertain number of steps on some 2 strings,we'll eventually reah the right step on eah of those 2 strings, and aept as well; otherwise, we'llnever have a reason to terminate and aept. Thus this proedure reognizes L. �



4. (12 pts) True/False:True If Composite = fhNijN is a omposite integerg is not NP -omplete, thenP 6= NP . If P = NP , all non-trivial problems in NP are NP -omplete. So ifComposite isn't, we know P 6= NP .False If a funtion f : A! B is a mapping redution from A to B and is one-to-one, thenB is mapping-reduible to A as well. We aren't guaranteed that f is invertible (wedon't know if it's onto). Counterexample: f0g �m ATM , but not vie versa.True If A and B are in NP , then so is A [B. We an reate a erti�ate for w being inA [ B by providing either its erti�ate as a member of A or of B, and indiatingwhih one we're providing.False If A and B are NP -omplete, then so is A \ B. 0 Æ SAT \ 1 Æ SAT = ;, whih isnot NP -omplete.True CFL( P (where CFL is the lass of ontext-free languages). We know CFL � Psine we demonstrated an O(n3) universal parser for CFLs; learly, f0n1n2ng 2 P ,but it's not in CFL. Thus the inlusion is proper.False The set of problems to whih ATM is mapping-reduible is unountable (note thatall suh problems are neessarily undeidable). A mapping redution is a omputablefuntion, whih is de�ned by a TM, and there's only a ountable number of distintTMs.


