CS 172 — Spring 2000
Computability and Complexity
Prelim #2 Solutions

Solution 1. The language A is context free. We call a word w such that w = w® a palindrome.
We build a CFG for palindromes based on a recursive definition of a palindrome. Note that 0, 1,
and € are palindromes. Moreover, if w is palindromatic, so are Ow0 and lwl, and these are the
only ways that we can generate palindromes. Hence, a CFG for A is

S — 0]1]e
S — 0501851

The language B is also context-free. A CFG for B is

S — 050|151 |D
D — 170|071
T — 0T|1T|6

Intuitively, S generates strings with matched symbols, or D, and D generates strings whose first
and last characters do not match (the nonterminal 7" generates the language (0 U 1)*).

Solution 2a. If g is dead, then ¢ is redundant. Suppose ¢ is dead, and let w be a word in L(M).
Then, the machine M has an accepting run on w that does not go through ¢ (since ¢ is dead), and
we can duplicate this run on the machine M \ q. On the other hand, if M \ ¢ has an accepting run
on a word w, this can again be duplicated in M, and moreover, this run does not go through gq.

However, even if ¢ is redundant, ¢ may not be dead. This may occur, for example, if M is
nondeterministic, and has two runs on the same word. As an example, consider an NFA M. We
construct the NFA M’ which consists of two identical copies of M, with an additional initial state
that nondeterministically chooses to go to either the start state of the first copy or the first state
of the second copy. Then, each state in M’ (except the initial state) is redundant, but there are
states that are not dead.

Solution 2b.
The dead-state problem is the emptiness problem in disguise.

1. Dyga is recursive. This problem can be reduced to graph reachability: (M,q) € Dyga iff in
the transition graph, there is no path from the start state to the state q.

2. Dppa is recursive. Given a PDA (that accepts on final state) and a state ¢, make ¢ the only
accepting state. Then run the algorithm for emptiness. If the language is empty, then ¢ is
dead, and if ¢ is dead, the language is empty.

3. Dtpn is co-r.e. : guess a string w and simulate the machine M until it hits the state g. It is
not recursive, though. We reduce from TMEmptiness. Given a Turing machine M, one can
construct an equivalent Turing machine N with only one accepting state g4, moreover, the
Turing machine halts whenever it accepts. Now, suppose we wish to check that N is empty.
We ask if (N,q4) € Dtm. It is clear that M is empty iff N is empty iff (N, q4) is in D1py.

1. Rnfra is recursive. This is because language equivalence is recursive.

2. Rppa is co-r.e. : guess a string w that is in L(M), but not in L(M \{q}) (or a string w that is
in L(M \ {q}) but not in L(M)), and run the recursive algorithm for membership on the two
machines interleaved. It is not recursive, however. We reduce from CFG universality (which
is not recursive). Given a PDA M = (Q,%,T,6,qo, F), construct the PDA M’ by adding a
new state g4, and an edge from gy to g4 labeled with €. From ¢4, the machine trivially accepts
everything. Thus, the PDA nondeterministically decides to go to g4 and accept trivially, or to
simulate the original machine. Then the language of M’ is clearly ¥*. However, the language
of M'\ q4 is the same as the language of M. Then, L(M') = L(M'\ q) iff L(M) = ¥*. But
the latter is not recursive, hence the former cannot be recursive either.

3. Rtwm is neither r.e. nor co-r.e. We reduce from TMUniversality, the idea is similar to the
reduction for Rppa. Given a TM M, we construct the TM M’ as follows. M’ has an initial
state ¢y from which it nondeterministically decides to go to either the start state of M,
or to a new state g4 from which it accepts all inputs trivially. Then, L(M') = ¥* and
L(M'\ {ga}) = L(M). Hence, L(M) = X* iff L(M') = L(M'\ {qa}).

