The last few questions are all or nothing. No partial credit will be given on these problems. So if you have an incomplete solution or a guess, please don’t bother to write it down.

Unless otherwise noted, each question is worth 20 points. Try to keep your answers succinct. Feel free to tear off the first 3 sheets, but please leave the rest stapled.

First, a few helpful theorems and definitions. Everything on this page may be useful.

Lemma: The Pumping Lemma:

If L is regular

then $(\exists n)(\forall \epsilon \in L)$ such that $|\epsilon| \geq n$ $(\exists w \in L)$ such that $w = uvw$ and $|uw| \leq n$ and $|v| \geq 1$ $(\forall i) : \epsilon^i w \in L$

Lemma: The corollary of the Pumping Lemma:

If $(\forall n)(\exists \epsilon \in L)$ such that $|\epsilon| \geq n$ $(\forall w \in L)$ such that $w = uvw$ and $|uv| \leq n$ and $|v| \geq 1$ $(\exists i) : \epsilon^i w \not\in L$

then L is not regular.

Theorem: Rice’s theorem: Let L_P be the set of machines with property P. If P is non-trivial, L_P is undecidable. Further, L_P is r.e. if and only if P satisfies the following three conditions:

1. If $L \in P$ and $L \subseteq L'$ for some r.e. L', then $L' \in P$.
2. If L is an infinite language in P, then there exists a finite subset of L in P.
3. The set of finite languages in P is enumerable.

3-SATISFIABILITY (3SAT)

INSTANCE: A boolean formula, F, which is an AND of clauses where each clause is an OR of 3 literals.

QUESTION: Is F satisfiable?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set $M \subseteq W \times X \times Y$, where $|W| = |X| = |Y| = \epsilon$ are disjoint sets.

QUESTION: Does M contain a matching, $M' \subseteq M$, such that no two elements of M' agree in any coordinate.

VERTEX COVER (VC)

INSTANCE: A graph G and integer K

QUESTION: Is there a subset of K vertices which cover all the edges?

CLIQUE

INSTANCE: A graph G and integer K

QUESTION: Does the graph contain a clique (completely connected subgraph) of K vertices?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G

QUESTION: Is there a cycle through all the vertices of G?

PARTITION

INSTANCE: A finite set A and a “size” $s(a) \in \mathbb{Z}^+$ for each $a \in A$.

QUESTION: Is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$$
1. (35 points) For the first 3 languages, give examples of strings in L and not in L, and then determine if L is regular. Prove your answer.

(a) $L = \{0^n \cdot 1^n : n \geq 0\}$

(b) $L = \{0^n 1^n : n \geq 0\}$

(c) $L = \{0^n 1^n : n \geq 0\}$

(d) Consider the following language:

$$LL^R = \{xy : x \in L \text{ and } y \in L^R\}$$

We know $L = \{0^n 1^n : n \geq 0\}$ is not regular. What is the language LL^R? Is it regular? Prove your answer.

(e) If L is regular, is LL^R also regular? Prove your answer.

2. (35 points) Which of the following are r.e.? Give a proof. (Hint: Any reductions can be done from L_n by creating an M' from (M, w) which accepts either \emptyset or Σ^* depending on whether $M(w)$ rejects or accepts.)

(a) $L_{3M} = \{(M_1, M_2, M_3) : \text{At least two of the machines accept the same language.}\}$

(b) $L_{2M} = \{(M) : M(e) \text{ never moves past the } |Q|^n \text{ tape square}\}$. ($Q$ is the set of states of M.)

(c) $L = \{(M) : M(e) \text{ never moves past the } |Q|^n \text{ tape square}\}$. ($Q$ is the set of states of M.)

3. (35 points) Which of the following are non-trivial, that $L_1 \neq L_2$. (A language, L, is non-trivial if it's neither \emptyset nor Σ^*. In other words, there is a string $x \in L_2$ and another string $x' \notin L_2$.)

(a) Show that if L_1 is recursive and L_2 is non-trivial, that $L_1 \cup L_2$. (A language, L_2, is non-trivial if it's neither \emptyset nor Σ^*. In other words, there is a string $x \in L_2$ and another string $x' \notin L_2$.)

(b) Show that if $P=NP$, that any non-trivial language in P is NP-complete.

4. Recall that PSPACE is the set of languages which can be accepted by a deterministic turing machine which, on input w, uses a polynomial in the length of w tape squares. Prove $NP \subseteq PSPACE$.

5. Show DOMINATING SET is NP-complete:

INSTANCE: Given a graph $G = (V, E)$ and a positive integer K.

QUESTION: Is there a subset $V' \subseteq V$ of fewer than K vertices which covers all vertices of G. (i.e., each vertex is either in V' or adjacent to a vertex in V'.)

Hint: Reduce from VERTEX COVER.
6. Consider the BLOCK THE HOLES problem:

INSTANCE: Integers n and k and a deck of n cards shaped as below with k circles down the left and right sides. Some of the circles are punched out to make holes.

QUESTION: Is there a way to stack the cards, some face up and some face down, so that all the holes are covered (so no light would shine through.)

In the above example, $n = k = 3$ and the *'s mark the holes. It is a yes instance of BLOCK THE HOLES, since all holes can be blocked by turning cards 1 and 3 face up, and card 2 face down:

Use 3-SAT to show BLOCK THE HOLES is NP-complete. Hint: A card you may eventually use is one with holes down one side. The card will serve a role similar to the element representing FALSE in SET-SPLITTING.

7. (All or nothing) If L is regular, are the following two languages also always regular? Prove each answer.
 (a) $L_1 = \{xy : x0y \in L \text{ and } |x| = |y|\}$
 (b) $L_2 = \{x0y : x \in L \text{ and } |x| = |y|\}$

8. (All or nothing) Use VERTEX COVER to show SHORTEST COMMON SUBSEQUENCE is NP-complete:

 INSTANCE: Finite alphabet Σ, finite set R of strings from Σ^*, and a positive integer K.

 QUESTION: Is there a string $w \in \Sigma^*$ such that each string $x \in R$ is a subsequence of w.

 (For example, $R = \{ab, cb, ca, ac\}$ and $K = 4$ is a positive instance by choosing $w = abc$.)

9. (All or nothing) A language is defined to be in D^P if it is the intersection of a language in NP with one in co-NP. In other words, D^P is the set of languages which can be expressed as a set difference of two languages in NP.
 (a) Show UNIQUE-SAT is in D^P.

 INSTANCE: Boolean formula F

 QUESTION: Does F have exactly one satisfying assignment of its variables?
 (b) Find a D^P-complete language. Provide a proof.