
CS 170, Spring/1998
Midterm #2

Professor J. W. Demmel

Problem #1 (12 points)
The following describes an execution of MAKESET, UNION, and FIND operations on a set of 10 elements,
labeled 1 through 10. MAKESET assigns rank 0 to an element, and UNION breaks ties by putting the tree
whose root has the larger label as the parent of the other.

for j = 1 to 10
MAKESET(j)
endfor
UNION(1,2); UNION(1,3); UNION(4,5); UNION(4,6); UNION(1,6); UNION(7,8); UNION(9,10);
UNION(7,10); UNION(3,8); FIND(4); FIND(3);

Give the tree from executing the above steps using union-by- rank with no path-compression. Be sure
to label the nodes in the final tree, including their final ranks.

•

Give the tree from executing the above steps using union-by- rank with path-compression. Be sure to
label the nodes in the final tree, including their final ranks.

•

We recommend that you draw the intermediate trees for partial credit.

Problem #2 (16 points)
In this question we will consider how much Huffman coding can compress a file F of m characters taken
from an alphabet of n=2s characters x0, x1, x2,...,xn-1.

How many bits does it take to store F without Huffman coding?•

Suppose m = 1000 and n = 8, with characters 0,1,2,3,4,5,6, and 7. Give an example of a file F (a
string of 1000 digits from 0 through 7) in which every character xi appears at least once, which
compresses the most under Huffman coding. How many bits does it take to store the compressed file?

•

Let f(xi) denote the frequency of xi, i.e. the number of times xi appears in F. Prove that there exist
frequencies f(xi) > 0 such that the number of bits needed to store F without Huffman coding is (lower
bound) log n times the number of bits to store F when it is Huffman encoded. You can assume that
the length of the file m, is much larger than n. Be sure to exhibit the bit patterns representing each
character, both with and without Huffman coding, as well as explicit formulas for each f(xi).

•

CS 170, Midterm #2, Spring/1998

CS 170, Spring/1998course, semester/year Midterm #2exam # Professor J. W. Demmelprofessor (e.g., Professor J.
Wawrzynek)1

Problem #3 (20 points)
In class we derived the FFT for vectors of length n a power of two. In this question we will derive the FFT
for n = 3s, a power of three.

Let p(z) = (summation from j=0 to n-1 of) pjzj be a polynomial of degree at most n - 1, where n = 3s.
Show that p(z) can be written as the sum

p(z) = p0(z3) + zp1(z3) +z2p2(z3) (1)

where p0(z'), p1(z'), p2(z') are each polynomials of degree at most (n/3) -1. Be sure to explicitly
exhibit the coefficients of each polynomial.

•

Let w = e2(pi)i/n, i = (-1)1/2, be a primitive n-th root of unity. Using equation (1), show that you can
evaluate p(z) at the n points w0, w1, 2, ..., wn-1, given the values of the 3 polynomials p0(z'), p1(z'),
and p2(z') at the n/3 points w0, w3, w6, w9 ..., wn-3. You should write down a loop that evaluates p'j =
p(wj), for j = 0 to n -1, in terms of the values of p0(z'), p1(z'), and p2(z').

•

Write a recursive subroutine for evaluating p(z) at wj, j = 0,..., n-1. Use your answer from the
previous part in your answer.

•

What is the complexity of your recursive subroutine? You should write down a recurrence for the
complexity T(n), justify it, and quote a theorem from class to solve it.

•

Problem #4 (18 points)
Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n
and are allowed unit time to access the j-th element of each list. Give an O(log m + log n) time algorithm for
computing the k-th largest element in the union of the two lists.

Give a recurrence relation for this problem and determine its complexity. Make sure you justify your
recurrence relation and show your work when solving it. Hint: binary search.

Problem #5 (9 points)
True or false? No explanation required, except for partial credit. Each correct answer is worth 1 point, but 1
point will be subtracted for each wrong answer, so answer only if you are reasonably certain.

In a UNION-FIND data structure, a root node of rank three can have exactly one child.a.

In UNION-FIND, the rank of a node can be equal to the rank of its parent.b.

In UNION-FIND, FIND with path compression can take a maximum of log(n) steps, where n is the
number of elements.

c.

The algorithm for computing a Huffman code is an example of a greedy algorithm.d.

The solution of T(n) = 9T(n/2) + n3 is Theta(n8).e.

CS 170, Midterm #2, Spring/1998

Problem #3 (20 points) 2

The solution of T(n) = T(n-1) + n4 is O(n6).f.

The solution of T(n) = T(n - 1000) + n2 is O(n3).g.

The product w1w2w3...wn of the n- th root of unity is either 1 or -1 for all n.h.

The coefficients of the polynomial p(x) = (Summation from j=0 to n-1 of) pjxj of degree at most n - 1
are uniquely determined by the values p(xj) of the polynomial at n arbitrary points x0,...,xn- 1.

i.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

CS 170, Midterm #2, Spring/1998

Problem #5 (9 points) 3

	CS 170, Midterm #2, Spring/1998

