I ACCEPT NO RESPONSIBILITY FOR ERRORS ON THIS SHEET. I assume that $E=\Omega(V)$.

Data structures

- Binary heaps are implemented using a heap-ordered balanced binary tree. Binomial heaps use a collection of B_{k} trees, each of size 2^{k}. Fibonacci heaps use a collection of trees with properties a bit like B_{k} trees. (The operation HEAPIFY below makes a heap with n elements without doing n INSERTs.)

Procedure	Binary heap (worst case)	Binomial heap (worst case)	Fibonacci heap (amortized)
MAKE-HEAP	$O(1)$	$O(1)$	$O(1)$
HEAPIFY	$O(n)$	$O(n)$	$O(n)$
INSERT	$O(\lg n)$	$O(\lg n)$	$O(1)$
MINIMUM	$O(1)$	$O(\lg n)$	$O(1)$
EXTRACT-MIN	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$
UNION	$O(n)$	$O(\lg n)$	$O(1)$
DECREASE-KEY	$O(\lg n)$	$O(\lg n)$	$O(1)$
DELETE	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

- Binary search trees implement all the operations of heaps (except UNION) in addition to SEARCH. Virtually all the operations take time $\Theta(\log n)$.
- The union-find data structure implements the operations UNION $(x, y$, label $)$ and label $\leftarrow \operatorname{FIND}(x)$ on a collection of disjoint sets. Initially (before any UNION operation) each of n elements is in its own set of size one. A total of m disjoint set operations take time $O(m \alpha(m, n))$, where $\alpha(m, n)$ is a ridiculously slowly growing function. $\alpha(m, n)$ is $o\left(\log ^{*}(m)\right), o(\log m)$, and $\Omega(1)$.
Sorting
- For comparison-based sorting algorithms, Heapsort and mergesort take time $O(n \log n)$, and quicksort takes expected time $O(n \log n)$. An information theoretic lower bound for any comparison based sort is $\log (n!)=\Omega(n \log n)$.
- For n numbers known to fall within a range $\{1, \ldots, N\}$, radix sort will take time $O(n+N)$. Linear time algorithms are often possible if more can be known about the numbers besides how to pairwise compare them.
- Order statistics (the $k^{\text {th }}$ largest element of n elements, or the median of n elements) can be found in time $\Theta(n)$ by a comparison based algorithm. The algorithm chooses a pivot by recursively computing the median of the medians of $n / 5$ subsets of 5 elements each. Once all elements are compared to the pivot, $1 / 4$ of the elements can be discarded, as they are all known to be greater than (or, less than) the $k^{\text {th }}$ largest element.

Exploring graphs

- Breadth first search (BFS) takes $O(E)$ time and finds shortest paths.
- Depth first search (DFS) takes $O(E)$ time. Also in this time you can have preorder numberings (or discover times), postorder numberings (or finish times), classification of edges as forward, back, back-cross or back-cross-tree edges.
- A topological sort of a dag can be found in $O(E)$ time by reversing the postorder numbers in a DFS.
- Strongly connected components (SCC's) can be found in $O(E)$ time. Note that the component graph, G^{SCC} is acyclic, so you can topologically sort it.

Minimum Spanning Trees (MST's)

- If $A \subset E$ is part of a MST, and S is a cut which no edge in A crosses, then the minimum edge across the cut can be added to A to yield part of a MST.
- Kruskal's grows a collection of trees by always adding the cheapest edge which connects two trees, taking time $O(E \lg V)$ to sort the edges.
- Prim's algorithm grows a single tree from a vertex by always adding the cheapest edge out from the tree, taking time $O(E+V \lg V)$ if a Fibonacci heap is used.

Shortest path problems

- Single-source shortest paths for non-negative edge weights can be found by Dijstra's algorithm. Like Prim's, grow a tree, always adding the vertex with the cheapest path from the source by extending the tree by only one edge. Takes $O(E+V \lg V)$ using a Fibonacci heap.
- Single-source shortest paths for edge weights which may be negative can be found using Bellman-Ford. Make V passes over the graph, updating shortest path estimates to each vertex relaxing edges. Either a negative cycle will be found or a shortest path tree in time $O(E V)$.
- All-pairs shortest path problems had a few algorithms:
- Matrix-multiply like algorithms taking time $O\left(V^{4}\right)$ or $O\left(V^{3} \log V\right)$.
- Floyd Warshall takes time time $O\left(V^{3}\right)$. They use dynamic programming to solve

$$
d_{i j}^{(k)}=\text { the shortest path from } v_{i} \text { to } v_{j} \text { using paths going through }\left\{v_{1}, \ldots, v_{k}\right\}
$$

- Johnson's algorithm first solves a single source shortest path problem from an added vertex, s, (with edges $(s, v), v \in V$ of weight 0$)$ to reweight the edges by:

$$
\hat{w}=w(u, v)+\delta(s, u)-\delta(s, v)
$$

This results in positive edge weights, and Bellman-Ford can be used to take time $O(E V)$.

Linear programming

- In linear programming, the goal is to optimize a linear objective function subject to linear inequality constraints. No algorithm were discussed, but polynomial time algorithms exist for linear programming.
- In integer linear programming, the goal is to find an integer solution to a linear programming problem. No polynomial time algorithm is known nor is likely to exist for this NP-complete variant.

Flow networks and maximum flows

- Capacities satisfy $c(u, v) \geq 0$. Flows satisfy

Capacity constraints : $f(u, v) \leq c(u, v)$
Skew symmetry: $f(u, v)=-f(v, u)$
Flow conservation: $\forall u \in V-\{s, t\}: \sum_{u \in V} f(u, v)=0$

- The residual capacities are given by $c_{f}(u, v)=c(u, v)-f(u, v)$.
- The min-cut max-flow theorem proves the maximum flow is equal to the minimum capacity over all cuts. Further, if there are no augmenting paths in the residual graph, a maximum flow has been obtained.
- Ford-Fulkerson finds paths from s to t in the residual graph to augment the flows until no more paths can be found, taking time $O\left(E f^{*}\right)$, where f^{*} is the value of the max-flow.
- Edmonds-Karp improves on this by always choosing the shortest augmenting path (i.e., fewest edges), finding the max-flow in time $O\left(V E^{2}\right)$.

Number theoretic algorithms Throughout, define β to be the length of bits in all the numbers involved.

- The greatest common divisor $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$, yielding Euclid's algorithm taking $O(\beta)$ arithmetic operations.
- If $\operatorname{gcd}(a, b)=d$ then there is an x and y so that $a x+b y=d$. Euclid's algorithm can be adjusted to calculated x and y efficiently.
- (Chinese Remainder Theorem) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and $n=n_{1} n_{2}$, then there is a one-to-one mapping between numbers $a \bmod n$ and pairs $\left(a_{1} \bmod n_{1}, a_{2} \bmod n_{2}\right)$ so that $a_{i}=a \bmod n_{i}$. To compute a, find x and y so that $n_{1} x+n_{2} y=1$ and notice that $(1,0)$ maps to $n_{2} y \bmod n$ and $(0,1) \operatorname{maps}$ to $n_{1} x \bmod n$. So, (a_{1}, a_{2}) maps to $a_{1} n_{2} y+a_{2} n_{1} x \bmod n$.
- (Fermat's Little Theorem) For p prime, $1 \leq a<p, a^{p-1} \equiv 1(\bmod p)$.
- A pseudo-prime test is to check if $2^{n-1} \equiv 1(\bmod n)$; output "prime?" if yes, "composite!" if no. Very few composites look like primes. A randomized primality test chooses k random values of a in the range $1 \leq a<n$. For each, calculate if $a^{n-1} \equiv \pm 1 \quad(\bmod n)$. If one is not ± 1 output "composite!". If all are 1 output "composite?". Otherwise output "prime?". This test fails with probability $\leq \frac{1}{2^{k}}$.
- In the RSA public-key cryptosystem, a participant creates her public and private keys with the following precedure.

1. Select at random two large prime numbers p and q.
2. Compute n by the equations $n=p q$.
3. Select a small odd integer e that is relatively prime to $\phi(n)=(p-1)(q-1)$.
4. Compute d as the multiplicative inverse of $e \bmod \phi(n)$.
5. Publish the pair $P=(e, n)$ as her RSA public key.
6. Keep secret the pair $S=(d, n)$ as her RSA secret key.

To encode message M, computer $M^{e} \bmod n$. To decode cybertext C, compute $C^{d} \bmod n$

David Wolfe
You should not need to write any code for this exam. Please make your answers as brief and as clear as possible. I highly recommend crossing out mistakes with a few dark strokes of the pen rather than erasing the work completely in case it is worth partial credit.

Below is a summary line for each question on the exam. You may use the backs of pages if you need more space, but please indicate for the grader you've done so: For example, "Continued on back of page 4". Please leave the exam stapled. You can look pick up a solution set (with the questions repeated) when you leave.

1.	Edmonds-Karp algorithm	$/ 20$
2.	Linear programming definitions	$/ 15$
3.	Job scheduling linear program	$/ 30$
4.	Non-cycle edges	$/ 20$
5.	Unit-capacity edges	$/ 30$
Total	(Extra points possible)	$/ 115$

1. (20 points) The following gives capacities and the flow after executing one round of the Edmonds-Karp improvement to the Ford-Fulkerson algorithm:

(a) Draw the residual graph, G_{f} in the space below. The dotted edges (and the extra graph) are for your convenience. You need not include edges into s or from t in G_{f}.

(b) Draw the flow obtained after one more iteration of Edmonds-Karp. Please do not indicate the capacities; you only need to draw edges with flow.

2. (15 points) Consider the five problems labeled (a)-(e) below:

$$
\begin{aligned}
\min 3 x_{1}+4 x_{2} & \text { s.t. } \\
x_{1}^{2}+x_{2} & \leq 5 \\
x_{2} & \geq 0
\end{aligned}
$$

(a)

$$
\begin{array}{ccc}
\max x-3 y+5 z & \text { s.t. } \\
x+y=4 & \\
-y+z \geq 2 & \\
-x+z \leq 6 &
\end{array}
$$

(b)

$$
\begin{gathered}
\min x_{1}+x_{2} \\
2 x_{1} . t . \\
2 x_{1}+x_{2}
\end{gathered} \leq 5
$$

$$
(d)
$$

$$
\begin{aligned}
& \min x_{1}+x_{2} \text { s.t. } \\
& x_{1}, x_{2} \in\{\ldots,-2,-1,0,1,2,3, \ldots\} \\
& 2 x_{1}+x_{2} \leq 5 \\
& .5 x_{1}-3 x_{2} \geq-4
\end{aligned}
$$

(c)

$$
\begin{gathered}
\min x_{1} x_{2} \text { s.t. } \\
3 x_{1}+2 x_{2} \geq 10
\end{gathered}
$$

(e)

Of the five, two are linear programs and one is an integer linear program. Indicate which in the boxes below:

Linear program	\square
Linear program	\square
Integer linear program	\square

3. (30 points) We want to determine the optimal scheduling of m jobs to a machine such that:

- All jobs must be completed within n weeks.
- Job i requires a total of r_{i} hours.
- At most h_{j} hours can be scheduled on the machine during week j.
- There is a cost $c_{i j}$ for each hour that job i is assigned to the machine during week j.

This problem can be formulated as a linear program with $m \times n$ variables, where $x_{i j}$ is the number of hours the machine spends on job i during week j.
(a) Write the objective function that minimizes the total cost for a possible schedule.
(b) For job i which requires r_{i} hours, write the corresponding linear constraint.
(c) For week j which has at most h_{j} hours available, write the constraint corresponding to the jobs scheduled during this week.
(By the way, the additional constraints, " $\forall i, j: x_{i j} \geq 0, "$ will complete the linear program.)

Name
4. (20 points) Give an $O(E+V)$ algorithm to find all edges in a directed graph $G=(V, E)$ which are not contained in any cycle. Hint: Use depth first search, bread first search, strongly connected components and/or topological sort as subroutines. (If your algorithm is simple and clearly stated, no justification is required. A one sentence solution could receive full credit.)

Name
5. (30 points) Let $G=(V, E)$ be a flow network with source s, sink t, and suppose each edge $e \in E$ has capacity $c(e)=1$. Assume also, for convenience, that $|E|=\Omega(V)$.
(a) Suppose we implement the Ford-Fulkerson maximum-flow algorithm by using depth-first search to find augmenting paths in the residual graph. What is the worst case running time of this algorithm on G ?
(b) Suppose a maximum flow for G has been computed, and a new edge with unit capacity is added to E. Describe how the maximum flow can be efficiently updated. (Note: It is not the value of the flow that must be updated, but the flow itself.) Analyze your algorithm.
(c) (Extra credit) Suppose a maximum flow for G has been computed, but an edge is now removed from E. Describe how the maximum flow can be efficiently updated in $O(E+V)$ time.

MORE SPACE IF REQUIRED

