
CS-170 Solution to Exam 2 March 22, 1995David Wolfe1. (7 points per part) No words are required (nor recommended). Consider the following graph G:f f ff f f?@@@@R- - ?����	����� -G)Consider graphs A, B and C below (shown as solid edges), all subgraphs of G:f1 f2 f3f4 f5 f6?@@@@R- - ppppppp?ppppppppppp	p p p p p p p p p p p� - f1 f3 f4f2 f5 f6?@@@@Rp p p p p p p- - ?ppppppppppp	����� p p p p p p p- f3 f4 f1f6 f5 f2?@@@@R- p p p p p p p- ?ppppppppppp	p p p p p p p p p p p� p p p p p p p-A B CSome answers to parts a,b, and c below may be the same. Vertex numbers are for part (c) only.(a) Which one of the subgraphs indicated could be a breadth �rst search tree? A(b) Which one of the subgraphs could be a depth �rst search forest? A(c) Which one of the graphs is labeled with a topological sort of G? B(d) How many strongly connected components does original graph, G, have? 6(e) For the following graph, prove edge e is part of some minimum spanning tree by drawing an appropriatecut in the graph. (Just draw the cut.)f f f ff f f f3 52 4 31e 6 24 3����������� f f f ff f f f3 52 4 31e 6 24 3(Second copy is for your convenience.)(f) Dijkstra's algorithm is being run to �nd shortest paths from source s in the following undirected graph.The graph is shown in dashed edges, and the tree so far is solid. Darken the dashed edge which wouldnext be added to the tree.f f f ffs f f f7 13 2 11 4 32-� 1 f f f ffs f f f7 13 2 11 4 32 1(Second copy is for your convenience.)2. (20 points) The all-pairs reachability problem: Given a directed graph G = (V;E) in the form of an adjacencymatrix, determine for all pairs of vertices u; v 2 V if there is a path from u to v. Propose an e�cient algorithmto solve this problem. You'll receive:� full-credit for O(V (E + V ))� extra-credit for anything faster, say O(V 2) or O(V 2 logV )Convert the adjacency matrix to an adjacency list representation in O(V 2) time, and construct a depth-�rst search tree from each vertex u to see which vertices it can reach | O(V (E + V )).1



3. (30 points) Consider the following variant of the 0-1-knapsack problem in which there is an unlimited supplyof each item. You have won a shopping spree at a store where there are n products; the ith has size wi andvalue vi. You have a grocery cart which can be �lled with products whose size totals to W , taking as many ofeach product as you wish. Your goal is to maximize the total value of the products you take.(In the 0-1 knapsack problem, you take at most one of each product. In this problem, there is an unboundedsupply of each product.)Determine two dynamic programming algorithms to the value of goods, V , which you can take during yourshopping spree. It su�ces to give a recurrence with a one line explanation verifying the running time of adynamic programming algorithm to solve the recurrence.(a) Give an O(nW ) solution. (Hint: Let Vw be maximumvalue you can pack into a grocery cart holding totalsize w.)(b) Give an O(nV ) solution, where V is the total value you can pack in the grocery cart in the solution. (Hint:Let Wv be the minimum sized basket you need to hold a total value of v.)(By the way, an O(nW 2) solution duplicates each itemW times, and runs 0-1 knapsack as a subroutine.)For an O(nW ) solution, Vw = max�0; max1�i�nvi + Vw�wi�Each Vw takes O(n) time to compute, so computing V0; . . . ; VW takes O(nW ) time.For an O(nV ) solution, Wv = min1�i�nWv�vi +wiWv = 0 (For v � 0)IfWv+1 > W but Wv �W , then V = v is the solution. Computing each Wv takes O(n) time, so computingW0; . . . ;WV+1 takes O(nV ) time.4. (30 points) Give the best algorithm you can to �nd the kth-smallest element in an n-node binary heap, wheren is much larger than k.A trivial lower bound is 
(k): � k=2 elements must be examined, since the minimum could be anyof the � k=2 elements at depth lgk. Frederickson (22nd STOC, 1990) showed that this bound is tight,contradicting a fallacious lower bound paper of 
(n lgn), as well as the intuition of many theoreticians.A trivial upper bound is O(k lgn) by simply doing k DELETE-MIN's on the heap. Another algorithmworks in O(n) time by ignoring the heap and using linear time selection. The selection algorithm is foundin CLR 10.3 and is a fundamental algorithm which you should understand.For an O(2k) algorithm, note that only the top k levels (containing �(2k) nodes) can contain the kthsmallest. So just cut the entire heap after this depth in time O(2k), and run k DELETE-MINs taking timeO(k log(2k)) = O(k2).For an O(k2) algorithm, we don't actually have to cut the o� the bottom of the heap; instead just actas though it doesn't exist when doing the DELETE-MINs.Now for an O(k lg k) algorithm. The key is to take advantage of the heap order without doing DELETE-MINs. In particular, the ith smallest element is a child of one of the i � 1 smallest elements. Ini-tialize an auxilary heap A to contain the minimum element in the original heap, H. At stage i, doxi  EXTRACT-MIN(A), and insert xi's children in H into A. Return xk after doing 2k � 1 inserts andk EXTRACT-MIN's on the auxilary heap. 2


