
CS-170 Solution to Exam 1 February 22, 1995David WolfeProblems have been rephrased a little bit for clarity.There are two requirements for passing the course: (1) You must submit the questionaire from the �rstday of classes and (2) If I did not take your picture, you must submit one to me. Please complete both ofthese promptly. And if you have not given me $2 for copy charges, please do so.1. (20 points) Ms. Jones has an algorithm which she proved (correctly) runs in time O(2n). Shecoded the algorithm correctly in C, yet she was surprised when it ran quickly on inputs of size upto a million. What are at least two possible explanations of this behavior? (Two rather di�erentplausible explanations will receive full credit. If you give additional explanations, you may lose pointsfor unplausible ones. Be brief in your explanations.)I can think of four explanations, the �rst of which I think are most plausible:� Perhaps the algorithm runs in linear time. O(2n) means at most time a constant times 2n.Even a linear time algorithm is O(2n). �(2n) would mean the algorithm takes time at leasta constant times 2n.� Perhaps the input to her program is not the worst case input; she is entered the easiestinputs deal with.� The exponential behavior doesn't kick in until n is huge.� The following two explanations are implausible since 21;000;000 is so ridiculously huge. Afterall, the number of particles in the visible universe is less than 1090, or 2200. These implausibleexplanations are (a) The constant in front of 2n is extremely small, and (b) The computeris fast.You earned 12 points for each clear good explanation and 4 points for an unplausible one tomaximum of 20. If you gave any unplausible explanation, you received a maximum of 18 points.2. (20 points) Consider the following recurrence, where a+ b < 1 and a; b � 0:T (n) = 0 , if n � 1T (n) = T (an) + T (bn) + n, if n > 1Prove T (n) = O(n).
1

We want to show T (n) � cn for some value of c. Then,T (n) = T (an) + T (bn) + n� can+ cbn+ n (by induction)= (c(a+ b) + 1)n� cn (for c su�ciently large but �xed as below.)Now, c(a+ b) + 1 � c if c � 11�a�b (which is greater than zero since a+ b < 1), so we'll choose the�xed constant to be c = 11�a�b . For the base case of n = 0, T (n) = 0 � c � n for n � 1. The mostcommon mistake was the following fallacious proof (or an elaborately disguised variant):T (n) = T (an) + T (bn) + n� O(n) +O(n) + n (by induction)= O(n)The reason this is fallacious is because it is critical that the same constant c be used for all n (oncen exceeds some small n0, if you wish). Any proof which failed to take advantage of the fact thata + b < 1 fell into this trap. In fact, when a + b = 1, the growth should be �(n logn), and whena+ b > 1, the growth should be exponential in n.3. (10 points) For which type of input data is Hu�man coding more likely to achieve better compression:random characters or English text. Why? (A one sentence explanation is su�cient.)English text. Hu�man coding compresses better the more repetition is present. Short code-words will be used to express common letters or words.4 & 5. The following text refers to the next two problems:You are going on a long trip. You start along the road at mile post 0. Along the road that you willtravel there are n hotels at mile posts a1 < a2 < � � �< an (ai is measured from the start of the trip).When you choose to stop, you must stop at one of these hotels (but you can choose which hotels youwant to stop at). You must stop at the last hotel, which is your destination. You decide that theideal distance to travel per day is 300 miles (plus or minus a few is ok); so if x is the number of milestraveled in one day, you assign a cost function of (300� x)2 that you want to minimize.4. (30 points) Design a dynamic programming algorithm to determine your total cost when you chooseto stop at those hotels which minimize the total cost function. (Hint: Let Ci be the minimum costif you were to start at mile 0 and complete your trip at hotel i.)(a) (15 points) Give a recursive rule for computing Ci.(b) (10 points) Explain how you can use dynamic programming to compute Ci in polynomial time.(c) (5 points) Analyze the running time of your dynamic programming algorithm.2

Let Ci be the minimum cost in which to break your travel up, assuming that your last stop ishotel i. Let's let hotel 0 denote our starting point. As a basis, let C0 = 0. In general, to computeCi, we consider all possible places k, 0 � k < i, that we might have stopped the night before. Thecost of having k as the previous stop is the minimum cost of getting to hotel k, followed by thecost of traveling in one day from k to i, a distance of (ai � ak). Minimizing over all k gives thefollowing rule: Ci = min 0 � k < i�Ck + (300� (ai � ak))2�A dynamic programming problem simply loops through all i (from 1 to n), building a lineararray for the Ci values using the recurrence to calculate Ci from C0; . . . ; Ci�1. Cn is the minimumcost we're looking for. If, in the table, for each values of i we also �ll in the value of k whichminimizes Ci, we can recreate the actual hotels we should stop at.It takes linear time to calculate each value of Ci, for a total time of O(n2).For part a), you got at least 10 points if you could write out the recurrence relation, plus orminus minor errors (wrong base case, incorrect minimizing bounds, informal but clear description).Some credit was given for an incorrect formalization, as long as it was a recurrence relations.Common mistakes included: not minimizing over a varying number of possibilities, using Ci�1in the place of Ck, and assuming you already knew the list of optimal stops to compute Ci. Therewas also some confusion as to where the recurrence should begin, at i = n or i = 1. The problemis symmetric. Therefore if you de�ned Ci with your base case at Cn, you were not penalized butyour de�nition of Ci had to be consistent (i.e. you could not use Ci�1 to de�ne Ci, since therecursion would never stop).If you decided to use a di�erent critter with more than one index and de�ned it correctly, youwere not penalized for that. However, your answer to part b) had to be consistent in any casewith your answer to part a). That is if you were using a one-dimensional critter in a), you wereexpected to describe a one-dimensional array in b).For part b), if you mentioned that you needed a one-dimensional array you were given 3 points.Saying that the Ci's had to be computed in increasing order received another 3 points. If you gotto that point then the remaining 4 points were for mentioning that dynamic programming allowedyou to work through the subproblems only once and reuse your work.A very common mistake here was mentioning the need for a two-dimensional table (costs fromany hotel to any hotel) after de�ning a critter with only one index in part a). This received nocredit since the table described was irrelevant to the problem. Another common error was to builda table from any hotel to any hotel for the cost function, which can always be calculated as theneed arises. Again, since the table was irrelevant, no credit was awarded.For part c), you had to answer consistently with your previous answers. If you described anO(n3) algorithm in a) and b), and then answered O(n2), you were awarded no credit. If you justwrote down the answer with no explanation, or if you gave a correct explanation but a wronganswer, you were given 2 points. If you could write down the order of entries in the array, or theorder of each computation in the array, that was also worth 2 points.5. (30 points) Propose and discuss a greedy heuristic for �nding which hotels to stop at. (Your heuristicneed not actually minimize the total cost function.)(a) (10 points) Propose a reasonable linear-time greedy heuristic for the problem.3

(b) (15 points) Either prove your greedy heuristic minimizes the total cost function, or give acounterexample demonstrating how your heuristic may fail to give the optimum set of hotels tostop at.(c) (5 points) Analyze the running time of your heuristic.One greedy heuristic is each day stop at the hotel up ahead nearest to 300 miles from whereyou started travel that day. Alas, this doesn't give the best schedule for hotels at mile posts 290,300, 580, since it's better to stop at 290 the �rst night (for a total cost of 102+ 102 = 200) ratherthan 300 the �rst night (for a total cost of 02 + 202 = 400).This can be made to run in linear time, since each day we need only consider hotels up tothe next one > 300 miles ahead; and even that hotel will only be considered twice (today andtomorrow).For the greedy heuristic, I took o� 5 points if your solution was not locally optimal. Commonexamples of non-locally optimal heuristics took the last hotel within 300 miles or the �rst hotel atleast 300 miles from the last stop. Notice, some of these heuristics are not guaranteed to always�nd a solution. Also, some solutions said stop at a hotel that's within a "few" miles of 300 milesfrom the last stop. This makes no sense what a "few" means. These also lost 5 points.For part (b), a proof that your greedy heuristic works lost 15 points.When analyzing your running time, you had to explain that each hotel was considered at mosttwice. Simply saying each hotel was considered at least once shows it's running time is
(n).Such an argument or a similar mistake in your analysis lost 3 points. No points were given ifno explanation was given of why the running time is O(n) or it was only shown to be somethingnon-linear, such as O(n2). Notice you can not �nd those hotels closest to some mile mark inconstant time. This would actually take O(logn) time since it would require a binary search. Itis also incorrect to analyze your running time based on the number of miles driven. It should bedependent on, n, the number of hotels.

4

6. (20 points) Consider the problem of �nding the largest, second largest and third largest from acollection of 8 elements using comparisons. (The 3 largest elements should be reported in decreasingorder.) You may assume the elements are distinct.Let u be an upper bound on the number of comparisons required to solve this problem.. (The valueof u would be a number, like \17", since there is no parameter such as n in the problem.) Let l be alower bound on the number of comparisons required.(a) (2 points) Is it possible that u < l? What would you conclude?(b) (2 points) Is it possible that u > l? What would you conclude?(c) (4 points) Is it possible that u = l? What would you conclude?(d) (6 points) Find an upper bound, u, on the number of comparisons required.(e) (6 points) Find a lower bound, l, on the number of comparisons required. (I recommend aninformation theoretic bound, since it's simplest.)(You'll certainly receive full credit for parts (d) and (e) if ju � lj � 3. A little worse should be ok,too.)

5

(a) No. Since l lower bounds the running time of any algorithm, a mistake must have beenmade.(b) Yes. Either a better lower bound or a better algorithm exists. The best algorithm takesbetween l and u comparisons.(c) Yes. Algorithm A is an optimal algorithm.(d) I'll propose an algorithm, A, which takes 12 comparisons. Find the maximum using atournament (7 comparisons). Then �nd the largest among those three who lost to thewinner of the tournament (2 comparisons). Then �nd the largest among those (at mostfour) remaining who lost to either the largest or second largest (3 comparisons). This yieldsu = 7 + 2 + 3 = 12 comparisons.A better algorithm selects the elements to compare in the second round in the right order toguarantee only three candidates for third largest. This yields 11 comparisons, but requiresjusti�cation.(e) There are 8 � 7 � 6 = 336 possible outputs. An information theoretic lower bound is thereforelog(8 � 7 � 6) = 9 comparisons.Another possible lower bound (not as good) is 7 to �nd the maximum alone. More sophis-ticated lower bounds are possible.You earned 3 points for the right answers (yes or no) to parts a-c. You earned full credit ifyou demonstrated an understanding for what a lower bound is in your reasons for a-c. By far,the most common mistake was to think that a lower bound is the best case running time for analgorithm. This is false. The performance of an algorithm is measured by the worst case input,whether we're talking about a lower bound or an upper bound. A lower bound lower bounds theperformance of all possible algorithms which solve a problem.Unfortunately, since the original phrasing of the question referenced a speci�c algorithm, A,many students thought the lower bound referred to the performance of that algorithm. If youmade this interpretation, the lower bound should have been on the worst case performance of thealgorithm. On occasion, this would be of interest when a speci�c algorithm's performance is hardto analyze completely. Because of the confusion, I gave a full 8 points. I even gave full credit ifyou thought the lower bound referred to the performance of an algorithm on best input, but youshould be aware that this is rarely of interest. You should never again use best case inputas a measure of a problem's performance in this course, even though you got credit thistime.For the upper bound, if you sorted (taking n logn = 24) comparisons, you received 3 points. Ifyou said sorting takes O(n logn), that means that it takes a constant times n logn comparisons, sothis does not necessarily yield n � log n. If you found the maximum 3 times in 7+6+5 comparisons,resp.) you earned 4 points.For the lower bound, if you stated clearly that it takes at least as long as �nding the maximumof 3 elements earned 4 points. A common mistake here was to give a better algorithm than yougave in part (d). (Perhaps you thought it would be the best possible, but you didn't prove it.)This just provides a better upper bound for the problem.6

