CS170 Spring 1993 Midterm
 Professor M. Blum

CLOSED BOOK. CALCULATORS ALLOWED.
You have two hours to complete this exam.
****DO ANY TWO OF THE THREE PROBLEMS. (Try to do all three if you can.)****

Problem \#1 (Find An Element Above the Median)

Give upper and lower bounds on the number of comparisons to solve the following problems:
INPUT: An array $\mathrm{A}=\left[\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{N}}\right]$ of real numbers. $\mathrm{N}=$ even integer. The array is NOT sorted. OUTPUT: An element a a_{1} contained in A that is greater than the MEDIAN, where the median is the biggest element in the bottom half.
EXAMPLE: $\mathrm{A}=[1,5,3,6]$; MEDIAN $=3$; RETURN 5 or 6 .
Use the decision tree model of computation. (Each comparison counts 1 step.)
Make your bounds as tight as you can make them, but no tighter.

Problem \#2 (Celebrity Problem)

DEFINITION: A celebrity is someone whom everyone knows, but who knows no one (else).
THE PROBLEM: You are to determine if a party of N persons, $\mathrm{N}>=2$, has a celebrity by asking questions of the form "Do you know that person over there?"
STEPS: Each question counts one step. All other computations are free.
ASSUME: Each person (including the celebrity, if any) answers every (such) question asked of him, and answers it honestly.
YOUR MISSION: Give upper and lower bounds on the number of steps (questions) to determine if a party has a celebrity. Make your bounds as tight as you can make them, but no tighter.
HINT: Each answer to a question fills one entry of the MxN matrix [aij] defined by:
$\mathrm{a}_{\mathrm{ij}}=1$ if i knows $\mathrm{j}, 0$ if i does not know $\mathrm{j},-1$ if $\mathrm{i}=\mathrm{j}$

Problem \#3 (A Sorting Problem)

In this problem, $\mathrm{f}: \mathrm{Z}^{+-} \mathrm{Z}^{+}$is a given function. (see I below).
An algorithm: Consider the following algorithm for computing "FOO [$\left.\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{N}}\right]$ ":
INPUT: An array $\left[\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{N}}\right]$ of reals; N contained in Z^{+}(positive integers)
OUTPUT: $\left[a_{1} \ldots a_{\mathrm{N}}\right]$ a permutation of the input.
BEGIN: 1 If Nthen sort input \& return; else
22.1 Do FOO [$\left.\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{f}(\mathrm{N})}\right]$ [Foo of top $\mathrm{f}(\mathrm{N})$ elements.]
2.2 Do FOO [$\left.a_{N-f(N)+1} \ldots a_{N}\right]$ [Foo of bottom $f(N)$ elements.]
2.3 Do FOO $\left[a_{1} \ldots \mathrm{a}_{(\mathrm{N})}\right]$ [Foo of top $\mathrm{f}(\mathrm{N})$ elements.]

END

NOTES

I.

For which of the following choices of f does FOO sort the input array? PROVE YOUR ANSWERS
A) $f(N)=N-1 B) f(N)=\operatorname{ceiling}(2 / 3 N) C) f(N)=\operatorname{ceiling}((N+1) / 2)$
II.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

