CS 170 Spring 2008 - Solutions to Midterm #1

Problem 1
1. 2" = Q(n!).
False: lim (2"/n!) = lim % . % . % < 2. lim % =0.
n—oo n—oo n—oo

2. 3log2vn — Q(\/n).
False: 310g2 Vo 3(% logyn) — n(% logy 3) — (\/ﬁ)log23.

3. 1f f(n) = O(g(n)), then g(n) = Q(f(n)).
True: By definition of € (this is in fact how your textbook defines Q).

4. 375 1 j = O(nlogn).
False: Y"_ | j = sn(n +1) = 6(n?).

5. If T(n) = 4T(n/2) + O(n), then T(n) = O(n?).

True: By the master theorem, T'(n) = O(n?). Since O-notation represents
an upper bound, T'(n) is also O(n?).

6. If T(n) = 4T(n/2) + O(n), then T(n) = O(n?logn).

True: By the master theorem, T'(n) = O(n?). Since O-notation represents
an upper bound, T'(n) is also O(n?logn).

7. If a® ! =1 mod n for all positive integers a < n, then n is prime.

False: Carmichael numbers are rare composite numbers n satisfying Fer-
mat’s test for all positive integers a < n.

8. The probability that an n-bit integer is prime is roughly 27™.

False: By Lagrange’s theorem, the number of primes less than an n-bit
integer z, for large n, is roughly . Therefore, the probabilty that an
(x/Inxz) _ 1 1 1 144

n-bit integer is prime is roughly “~—— = -— =~ WET = amz N n

9. Any DAG with a unique source and sink has a unique topological ordering.

False: Consider a directed graph with four nodes A, B, C, and D and four
edges (A,B), (A,C), (B,D), and (C,D). There are two possible topological
orderings: A,B,C,D and A,C,B,D.

10. Breadth first search and depth first search produce the same tree on con-
nected undirected graphs if and only if the graph is a tree.

True: Suppose the input graph is an undirected tree T. Both DFS and
BFS must produce a tree, so they must contain all the edges of T' (all
trees have |V| — 1 edges). Since two trees must be identical if they have
the same root and same edges, both DFS and BFS will produce T.

Conversely, suppose the input graph G is undirected and connected but
is not a tree. Then G must contain a cycle C. Suppose C consists of the
k nodes vy, va,..., v, i.e. C is the cycle v1 — vg — ... — v — v1. Now
in the DFS tree, nodes vy, v, ...,v; will all be on the same path from
the root to a leaf. Why? Suppose vy is the first of these nodes to be
visited. Then, the remaining nodes must be visited at some point during
explore(vy) since the v; are all strongly connected. However, in the BFS
tree, nodes v, vs,...,v; will form at least two branches, braching from
the node first visited (imagine performing BFS on the cycle).

Therefore, BFS and DFS produce the same tree iff the input graph is a
tree.

Problem 2.1 (5 points each)

The number of bits in an integer x is O(log).

Therefore, the number of bits in a’ is ©(log(a®)) = O(bloga). Now loga =
O(n) and b = O(2™) since both a and b are n-bit numbers, so bloga = O(n-2").
Thus, O(n - 2") is an upper bound on the number of bits in a®.

Similarly, the number of bits in a®* is ©(log(a®))) = O(b°loga). Again,
loga = O(n), b= 0(2"), and ¢ = O(2") since a, b, and ¢ are n-bit numbers, so
bloga = O(n-(2")2")) = O(n-2("2"). Thus, O(n-2("2")) is an upper bound
on the number of bits in a®°.

Problem 2.2 (5 points each)

(a) The secret key d equals e=! mod (p —1)(g — 1). Since the n-bit primes p
and g are given as input, d can be found in O(n?) time using the extended
Euclid’s algorithm.

(b) The ciphertext ¢ equals m® mod pg. Therefore, ¢ can be computed in
O(n?loge) time using the repeated squaring method for modular expo-
nentiation.

Problem 3.1

First off, o(kl) means asymptotically faster than O(kl). This threw most people
off, and we gave no credit for (kl) solutions since they were trivial.

Here is a solution for selecting the sth item.

Find the median of each element of each array by choosing the middle el-
ement. Then, find the median of these medians which takes O(k) time using
linear time median finding or O(klogk) time by sorting them. Then, we use
this element to partition the elements in each list (by binary search we can find
which are bigger and which are smaller; requiring O(klogl) time.

Then, we will recurse with the following modification on the side with the
sth item.

Notice, that some lists may remain large in the recursive call but some will
be smaller. So, in the recursion we don’t take the median of medians but the
weighted median of medians; sort them and add up the size of the previous lists
until they add up to half.

Now, the median of medians will be less than at least n/4 items and greater
than at least n/4 items, so the recursion becomes as follows.

T(n) < O(klogl) + O(klogk) + T(3n/4).

The first term is the time to find the split index for the arrays using binary
search in each array. The second for finding the weighted median and the third
for the recursive call.

Initially there were n = kil elements in all, and after O(log!) recursive calls
we have O(k) elements, in which case we can finish in time O(k). Thus, the
total cost is bounded by the time for O(log!) recursive calls. This is bounded
by O(klog?l + klogllogk).

Problem 3.2

Since w = €2™/4 = § the FFT matrix is

1 1 1 1
1 1 =1 —i
1 -1 1 -1
1 — -1 1

The first row is the FFT of [1,0,0, 0], the last row is the FFT of [0, 0,0, 1].

Problem 4

4.1 (10 pts)

u and v are on a cycle if and only if there is a path from u to v and a path
from v to u. Thus, when running DFS starting from u, v must be a descendant
of u (pre(u) < pre(v) < post(v) < post(u)), and when running DFS starting
from v, u must be a descendant of v (pre(v) < pre(u) < post(u) < post(v)).
The algorithm proceeds as follows. Run DFS from each node, keep pre/post

number of each DFS run. If there exists a pair of nodes u and v, satisfying
pre(v) < pre(u) < post(u) < post(v) for one DFS run and pre(u) < pre(v) <
post(v) < post(u) for another DFS run, then u and v are on a cycle. If there
doesn’t exist such a pair of nodes, then output “No two nodes are on a cycle”.

4.2 (4 pts)

pre(u) < post(u) < pre(v) < post(v). Suppose v is explored before u. Since w is
reachable from v and this is a directed graph, we must have pre(v) < pre(u) <
post(u) < post(v), contradicting the assumption that the intervals are disjoint.
Therefore, u must be explored before v giving pre(u) < post(u) < pre(v) <
post(v).

It should also be pointed out that in case of an undirected graph, both
pre(u) < post(u) < pre(v) < post(v) and pre(v) < post(v) < pre(u) < post(u)
are possible. However, we gave full credit if you only answered the directed
graph case.

4.3 (6 pts)

In the case of a connected graph, pre(s) = 1 and post(s) = 2|V|, where |V]| is
the total number of nodes in the graph. In the case of an unconnected graph,
pre(s) =1 and post(s) = 2|C| < 2|V|, where |C] is the number of nodes of the
connected component containing the starting point s (i.e. the number of the
nodes reachable from the starting point, including the starting point itself).

Problem 5

Solution 1 (Full Credit)

Start from any node and run Dijkstra’s algorithm. Then k + 1 times, do the
following: update all the negative edges (not strictly necessary but easier to
prove correctness), place everything back in the priority queue, and run the
loop of Dijkstra’s that pulls nodes out and updates the adjacent edges. The
graph has a negative cycle if and only if any dist(v) changes in the last iteration
(i.e. the k + 1 iteration). The top level algorithm NegativeCycle, which uses
subroutines DijkstraLoop and UpdateNegativeEdges, is given below.

Algorithm 1: NEGATIVECYCLE

© 00 N O ok W N

[S e = S
D Uk W N = O

17
18

Input: Input graph G
Output: True if G contains a negative cycle, False otherwise
s = any vertex € V;
for allu €V do
| dist(u) = oo;
end
dist(s) = 0;
Q = makequeue(V, dist);
DijkstraLoop(G, Q);
fori=1 to k do
UpdateNegativeEdges(G, dist);
Q = makequeue(V,dist);
DijkstraLoop(G,dist, Q);
end
if UpdateNegativeEdges(G,dist) then
‘ return True
else
Q = makequeue(V,dist);
return DijkstraLoop(G,dist, Q)

Algorithm 2: DIJKSTRALOOP

© 00N O ks W N

10
11
12

Input: Input graph G, array of dist values dist, priority queue @
Output: True if any dist value is updated, False otherwise
retValue = False;
while @ is not empty do
u = deletemin(H);
for all edges (u,v) € FE do
if dist(v) > dist(u) + I(u,v) then
dist(v) = dist(u) + l(u,v);
decreasekey(H,v);
retValue = True;

end
end
return retValue

Algorithm 3: UPDATENEGATIVEEDGES

Input: Input graph G, array of dist values dist

Output: True if any dist value is updated, False otherwise

retValue = False;

for all edges (u,v) € E do

if I(u,v) <0 AND dist(v) > dist(u) + I(u,v) then

dist(v) = dist(u) + l(u,v);
retValue = True;

end
return retValue

®» N OO Gk W N

We will prove the following claim by induction:

After the ith iteration of the for loop (lines 8-12) of our algorithm
NegativeCycle, dist(v) is less than or equal to the length of any
path to v that uses up to i negative edges.

For the base case (after 0 iterations), we have already run Dijkstra’s algo-
rithm on the graph (line 7 of NegativeCycle). Thus, dist(v) is at most the
length of any path of positive edges in the graph. This is by the fact that
the unmodified Dijkstra’s algorithm returns a path no longer than the shortest
positive edge path.

Now by the inductive hypothesis, after iteration 4, dist(v) at most the length
of any path to v that uses up to ¢ negative edges. Then, after updating the
negative edges, every dist(v) is less than or equal to the length of any path with
1 negative edges that ends with a negative edge. Finally, the pass through the
queue in Dijkstraloop ensures that, for each node, dist(v) is less than or equal
to the dist value of any other node plus the length of a postive edge path to v.
Thus, after iteration i + 1, dist(v) is at most the length of any path to v using
up to i + 1 negative edges.

Therefore, as a specific case of our claim, after k iterations of the for loop,
dist(v) is less than or equal to the length of any path to v that uses up to k
negative edges. If a dist(v) is updated on the k + 1 iteration (lines 13-17 of
NegativeCycle), then the path P corresponding to that dist value must use at
least k + 1 negative edges. Since there are only k£ negative edges in our graph,
P must contain a cycle. This cycle must be a negative cycle because dist(v) is
strictly decreasing (P would not contain a cycle unless it had negative weight).

Conversely, assume our graph has a negative cycle. Then, for at least one
vertex v, we can create a path to v of arbitrarily small length and drive it’s dist
value arbitrarily low. Now, if a particular iteration of our algorithm does not
update any dist values, then the dist(v) values will never change again. So if
a particular iteration of our algorithm does not update any dist values, there
cannot be a negative cycle because we can no longer obtain arbitrarily low dist
values. Specifically, if the k + 1 iteration of our algorithm does not update any
dist values, then the graph does not have a negative cycle.

For the runtime, we have O(k) iterations of Dijkstra’s algorithm (which
each take O(m+nlogn) time using a Fibonacci heap to implement the priority
queue) and O(k) updates of the negative edges (which each take O(m) time).
So the total running time is O(k(m + nlogn)).

Solution 2 (3/4 Credit)

Remove all the negative edges. Find a single source shortest path from each
endpoint of a negative edge to each other endpoint (using Dijkstra’s algorithm).
Construct a graph on the (at most) 2k nodes with edge distances that correspond
to the shortest path distances between the corresponding point in the positive
edge graph. Put in the negative edges between the original nodes. This is a
graph on 2k nodes with O(k?) edges. One can check for a negative cycle in the
is graph in time O(k?3).

Any negative cycle in the new graph corresponds to a negative cycle in the
original since any edge in this graph corresponds to a path in the original graph.

Moreover, any negative cycle C' in the original graph must contain one or
more negative edges (denote the set of negative edges by N). Suppose C' does
not consist of positive edge shortest paths between endpoints of negative edges.
Then the cycle C’ formed by connecting the endpoints of N using positive edges
shortest paths has weight less than C. Thus, C’ is a negative cycle. This shows
that if there is a negative cycle C in the original graph, then there is a negative
cycle consisting of positive edge shortest paths between endpoints of negative
edges, i.e. a negative cycle in the new graph.

Thus, our algorithm finds a negative cycle if and only if a negative cycle
existed in the original graph.

We have ©(k) iterations of Dijkstra’s algorithm following by performing
Bellman-Ford on graph with ©(k) nodes and ©(k?) edges. Thus, the running
time for this is O(k(m + nlogn) + k) by implementing the priority queue with
a Fibonacci heap.

