CS-170 Efficient Algorithms & Intractable Problems, Spratip6

Midterm 1 Solutions

Note: These solutions are not necessarily model answetheR#hey are designed to be tutorial in nature,
and sometimes contain a little more explanation than anlidefation (especially in Q4). Also, bear in mind
that there may be more than one correct solutigou should read through these solutions carefully, even
for problemsthat you answered correctly! The maximum total number of points available is 65.

1. Trueor False?

(i) False. One possible counterexample is the following: 3pts

Fln) = g(n):{n f nis odd;

n3 if nis even.

Then we haveg% = n for all oddn, and so whem is large enough we cannot hayén) < Cg(n)
for any constan€. Thusf(n) # O(g(n). Similarly, considering even we see thag(n) # O(f(n)).
The key point here is that the definition of big-O requires ff@) < Cg(n) for all large enough; by
making the functiory(n) oscillate between values that are much bigger and muchenta#nf (n),
we can ensure that neithg(n) < Cg(n) norg(n) < Cf(n) holds asn — oo. Of course, to get
this weird behavior we have to cook up a slightly strange fioncg(n); for most functions that we
encounter in the analysis of algorithms, this doesn’t happe

Not many people got this part right. The main bogus answertoasy “True, because eithef(n)
has to grow at least as fast agn) or vice versa” This and other incorrect answers did not work
with the exact definition of big-O. Some people got close w@lid eounterexample by trying to define
two oscillating functions (e.gsin(n) and cos(n)); many of these attempts were correct in spirit, but
sometimes fell down on details suchfgds) and g(n) not tending to infinity.

(ii)

True. If pre(u) < post(u) < pre(v) < post(v) then the DFS backtracks frombefore vertexs is 3pts
discovered. But if there were an edge betweemdwv then the search would have to explore this edge
(and hence discover before backtracking from.

Most people got this right.

(iii)

False. If pre(u) < post(u) < pre(v) < post(v) then there could still be a directed edge frorto «; 3pts
this would be a cross edge for the DFS. Here is a small exasipdsying the pre- and post-visit labels
(the search starts aj:

1,6

)
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Most people got this right.




(iv) False. Letw be the vertex with lowest post-visit label. There could beekbedge fromv to one of its 3pts
ancestors, but it is not necessary thatis reachable from every vertex that is reachable frorklere
is a simple counterexample:
1,6

(2)

2,3 4,5

O ()

Many people got this wrong. The most common mistake wasiio €laue” because the only vertices
reachable frormv are its ancestors, and each of them certainly has a path his argument fails to
realize that those ancestors may themselves be able to athehvertices that are not ancestorswgf
and indeed from which is not reachable at all, such asin the above example.

(v) False. The same example as in part (iv) works hedas the vertex with highest post-visit label, an@pts
all vertices are reachable from but not all vertices are in the same SCC.

Most people got this right.

(vi) False. Consider the tree below, which specifies a prefix-free codarialphabet of five letters. This3pts
tree can arise (e.g.) from the following frequencies: 60080110%, 10%, 10%.

O/ O\O

(J10% 10% ) ()10% 109% )

The most common mistake here was to say “True because osieetive Huffman tree would not be a
full tree.” But as the example above demonstrates, the @ebe full without any leaves at level 2.

60% )

2. Divide-and-Conquer

(@) Recurrencel'(n) = 5T(n/2) + O(n?). 4pts
Solution: From the Master Theorem with= 5, b = 2, d = 2, we get thatl'(n) = O(n'°&2) =
O(n'o825).

(b) RecurrenceT'(n) = 3T(n/2) + ©(n?). 4pts

Solution: From the Master Theorem with= 3, b = 2, d = 2, we get thafl'(n) = O(n?) = O(n?).

(c) Recurrence?’(n) = /nT(y/n)+ ©(n). 4pts



Solution: Unwinding the recurrence, and replacing@fe) term byCn for a constant,! we get

T(n) = n'?>T(n?) +Cn
nY2 (AT (%) + Cnt/?) + Cn
(

n®4T(nY*) + Cn + Cn
n¥4 (3T (8 + Cn'/*) + Cn + Cn
= BT/ +Cn+Cn+Cn

= 2 T2 ) + kOn. (1)

To get the base case we need to thke log log n, for thenn2™" becomes!/1°&™ which is a constant.
With this value ofk, the first term in (1) becomes a constant timés2™ ", which is less tham, and this
is dominated by the second term which(g log log n. Thus the solution i§’(n) = ©(nloglogn).

Most people got into a mess with this one. Some tried to applytaster Theorem, even though the
recurrence is not of the correct form for that theorem. Oshstarted to unwind the recurrence but
failed to notice the correct form of the series as a functibk,dhe number of levels of unwinding (as
in (1) above). Many of these same people also didn’t coyemtimpute the number of levels, which
is log log n. Note that in fact this recurrence does wddkn ) at every level; since there ateg log n
levels the solution i®(n log logn).

3. Dijkstra’'salgorithm

(a) Hereis the table produced by Dijkstra’s algorithm: 6pts
Iteration
Node| O 1 2 3 4 5
A 0 0 0 0 0 0
B oo | 1 1 1 1 1
C oo | o | 3 3 3 3
D oo | 4 4 | 4 4 4
E oo | 8 7 7 7 6
F oo | oo | 7 ) ) )

Most people got this right. The most common mistake was ttiss¢f) = 6 in the fourth interation.
6pts

(b) Our goal is to figure out a path starting from verteat timet,, to a destinatiorz, in the shortest
possible time. The problem can be regarded as a shortespudittem if the travel time for each edge
is treated as the “length” of that edge. Now the major diffieee here with the standard setting of
the shortest path problem is that the “length” of each edge) is dynamicrather than a constant,
depending on the time at which we leave vertexdowever, because of the physicality constraint, we
may always assume that in any optimal path we always leaveex\&s soon as we arrive there (since
waiting at a vertex cannot decrease the total travel timkis fheans that we can compute an effective
length for each edge: namely, the length of edgev) should be taken a&, . (time(u)), where
time(u) is the earliest arrival time at. This earliest arrival time will be updated as the algorithm
proceeds, just as with the dist labels in the usual shortatspproblem. Hence only the update
portion of Dikjkstra’s algorithm needs to modified: when wemine the edgéu, v), we update the
labeltime(v) based ortime(u) + £(, . (time(u)). Here is the algorithm:

10f course©(n) is not quite the same as a constant timewhat we really mean here is that we could carry out the fahow

calculations witt9(n) replaced by the upper bouiidi » and the lower bound’>n and get the same form of answer (with only the
constants changed). Hence our calculations will find theeco®-expression fof'(n).




procedure ModifiedD jkstra(G,l,s,ty):
for all ueV:
time(u) = oo
prev(u) = nil
time(s) = £

H = makeheap(V') (using time val ues as keys)
while H is not enpty:
u = deletemin(H)
for all edges (u,v) € E:
i f time(v) > time(u) + £(y,)(time(u)) :
time(v) = time(u) + £(,,,)(time(u)
prev(v) =u
decreasekey(H,v)

After running this algorithm, the fastest route freno v can be obtained easily using by backtracking
using theprev labels.

The most common mistake here was just to say “use the cumeatstamp to query the black box to
get the travel time of the edge.” But many people did not iatdicow to keep track of that time stamp,
and simply used in the query, rather thatime(u).

2pts
(c) As argued in part (b), the physicality constraint allowgsto assume that we leave a vertex as soon

as we arrive at it. This is the reason we can use the arriva time(u) to query the travel time for
edges in the update operation. But if the physicality cemstlis removed, we might be able to wait
at some vertex: until some timet’ > time(u) such thatt’ + ¢.(t') < time(u) + £.(time(u)). If

we could figure out the optimal waiting timéat «, then we could still use the above algorithm with
time(u) 4 £(,,,)(time(u)) replaced by’ + (.(t'). However, in the absence of other information we
don’t have any way to find the optimél

Many people just said that removing the physicality coristres the same as introducing negative
edges into the graph (without explaining why). Actuallg thnswer is inadequate for at least two rea-
sons: (1) the connection with negative edges doesn't readlige sense; (2) even if this were the same
as introducing negative edges, it wouldn’t show that theoatgm fails because Dijkstra’s algorithm
does not necessarily always fail with negative edges.

4. Yet another M ST algorithm

(a) First, since the graph is connected, clearly there is &T Mf G. Now there are two reasonablépts
approaches for this problem:
Using the Cut Property: Let X = (), S = {v}, and consider the cut betweghandV — S. Clearly
e, IS the minimum edge crossing this cut, so by the Cut Property in some MST ofG.
Proof by contradiction: Suppose there exists an M3Tof G thatdoesn’tcontaine,. Add e, to T
Obviously this creates a cycle. Consider the other edgdentiono, €/ . If we remove this edge, since
w(e,) < w(el), then we destroy the cycle and create a new frewith cos{7’) < cost(T). This
contradicts the assumption th&ts an MST. Thus we can conclude ttedt MSTs of G containe,.

Almost everyone got this question right. However, we neeghtdogize. We should have asked you
to prove thate, is in all MSTs ofG. Notice that this follows directly from the proof by contietébn,

but not from the Cut Property proof. The reason we should ltve this is because this fact greatly
simplifies the proof of part (b).




(b)

There are basically three parts to this proof: (1) shgwirat adding all the,, to X in one iteration of 5pts
the while loop is correct; (2) showing that the contractigem@tion does the right thing; (3) showing
that all the iterations taken together lead to the MSGof

(1) By the proof by contradiction in part (a), we know tlzdlt the e, selected in the first loop of the
algorithm belong to an MST af, and thus it is OK to add them t&. (This can also be deduced from
the weaker version of part (a), with a little bit of extra wgrk

(2) First, note that the set of edgesthat are contracted form a forest (no cyclesynthis follows

from the fact that all edge weights are unique. Contractiregeidges,, causes each connected com-
ponent (tree) of this forest to collapse into a single vermtich means that we will never consider
any of the other edges internal to the component. But thisrisect because we already have a path
between all vertices in the component, and any further edigedd create a cycle. Furthermore, con-
sider two edges coming out of such a component, both of whoatit po a nodew. Choosing either of
these edges will connect the componenbt@nd hence make every vertex in the component reachable
from w. Since all edge weights are unique, we know that one edgeeigpen. Thus, we can simply
throw away the more expensive edge. This is exactly whatactibon does.

(3) After performing contraction, we now have a new set oftives (essentially “super-vertices”)
that themselves need to be connected. We can again appéal pooof by contradiction in part (a)
to choose edges for the MST of this reduced gréph This is exactly what happens in the second
iteration. We continue in this fashion until the vertex Betonsists of a single super-vertex. At this
point we have created a single connected component whosesetly forms a spanning tree @f.

This was a hard question, especially because we didn't givetlye best tool to use from part (a).

Nonetheless, it was doable, and we were surprised that nofoile managed full points. The most
common mistake was to miss parts of the analysis. When yaanalgzing an algorithm, you must

consider all the key operations. Many people either diseditbe choice of minimum edges, or con-
traction, but not both. Both are needed in any completelyemtranswer!

()

Let V;, be the set of vertices considered in thih iteration. Sol; = V. In the kth iteration, we 4pts
choose V| edges to contract, but these edges are not necessarilgtatictli However, any edge can

be selected at most twice (e.g., edgev) could be chosen both ag and as,). Hence we contract

at least V| /2 edges in this iteration, so we reduce the number of vertiges east a factor of 2. But
clearly we only need to do this at mdsg, |V'| times befordV'| reaches 1.

[Note that the algorithm might perform much better than;timgact, it is even possible that we could
form the entire MST in one iteration!]

Most students got this. One common mistake was to jump fréoingpthat there aréVy| contractions

at iteration k£, and then say that thus there af,|/2 vertices left over after the contractions. This
misses the core part of the argument. Another common mistakeo say that in the best case there
are |Vi|/2 contractions, rather than in the worst case.

(d)

Here is a concrete implementation of this algorithm thess disjoint sets with path compression amgts
union-by-rank to handle contracting nodes. You did not rtequovide this algorithm, but it will help
anchor the explanation below.

function MST(G = (V,E))
X=10
for each veV:
MAKESET (v)
while [V]>1:
for each e=(v;,v;) € E:
pi = Fl ND(’UZ)
pj = Fl ND(’UJ)
if pi #py



ey, = edge that mininmzes min{i(e; ),
ey, = edge that m ninzes min{i(e} ),
for each edge € = (u,v):
add e, to X
UNI ON(u, v)
return X

l(e)}
l(e)}

The first for-loop inside the while finds the minimum for eacddrtex (including super-vertices).
The FIND calls avoid considering edges within the same cogecomponent. We handle the
(u,w), (v,w) case cited in the problem description because we're takiegniin, which always
chooses the cheaper edge. Finally, UNION performs the lambméraction.

From part (c), the number of iterations(glog |V/|). To find the minimum for each vertex, we examine
each edge and perform a FIND on the vertices, so this takeéB|log™ |V|) time. Finally, we do
O(]V|log™ |V|) work for contractions. The total time @(|E|log |V |log* |V ).

No one got full points on this question. Note that you didatédnto go into the detail that we have
here. The problem was that most students did not say how #melldd multiple edges like:, w) and
(v,w) and did not talk about how to find the minimum after one iterafiNotice that it's enough to
say that in the first iteration finding the minimum takeg E|) time; however later on you need to use
Union/Find to implicitly merge adjacency lists].

(e)

The key observation in this part is to notice that we needyaof doing UNIONs and FINDs i@ (1) 3pts
time.

First, suppose MAKESE{;) actually simply marks in a sizg/| array named parent that parent=

i. When contracting two vertices, v;,i < j, we let parentj) = parent:). This type of UNION only
takesO(1) time. Furthermore, suppose we perform contractions inroofleertex labels: namely,
we contract the min edge fa; beforev; if i < j. By performing contractions in this order, we are
guaranteed that parent(pargn} = parenty).

Finally, we add an edge relabeling phase after all the cotitras are done. If an edge(s;, v;) andi

is j's parent, then this edge becom(es, v;). This relabeling ensures that we remove all references to
contracted vertices. This takéX|E|) time.

This new set of edgeB’ ensures that ifv;, v;) € E’, parenti) = ¢ and parer{tj) = j and so FIND
calls on the next iteration will tak@(1) time.

This algorithm take®)(log |V]) iterations, but this time computing the minimum take§ £|) time

and relabeling take®(|E|) time, and contraction take9(|V'|) time. So the final running time is
O(|Ellog [V]).

This was a pretty difficult problem, and no one got it competeght. A small number of people
correctly observed that we needed to make Union-Find €2Ke time for each operation. But no one
really said how we might do that. Quite a few people said itntgmossible to do better with Union-
Find: this is not true. We have a very structured problem wHgNIONs and FINDs are performed
in a certain order, and this is what our solution exploits. &mber of students said thaig™ |V| is
practically a constant, so we can ignore it in the run-timebysis. This is not correct! Big-O notation
is about function growth, antbg™ |V'| does go to infinity in the limit, even though it does so very
slowly.




