
CS–170 Efficient Algorithms & Intractable Problems, Spring2006

Midterm 1 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution (especially in Q4). Also, bear in mind
that there may be more than one correct solution.You should read through these solutions carefully, even
for problems that you answered correctly! The maximum total number of points available is 65.

1. True or False?

(i) False. One possible counterexample is the following: 3pts

f(n) = n2; g(n) =

{

n if n is odd;

n3 if n is even.

Then we havef(n)
g(n) = n for all oddn, and so whenn is large enough we cannot havef(n) ≤ Cg(n)

for any constantC. Thusf(n) 6= O(g(n). Similarly, considering evenn we see thatg(n) 6= O(f(n)).
The key point here is that the definition of big-O requires that f(n) ≤ Cg(n) for all large enoughn; by
making the functiong(n) oscillate between values that are much bigger and much smaller thanf(n),
we can ensure that neitherf(n) ≤ Cg(n) nor g(n) ≤ Cf(n) holds asn → ∞. Of course, to get
this weird behavior we have to cook up a slightly strange function g(n); for most functions that we
encounter in the analysis of algorithms, this doesn’t happen.

Not many people got this part right. The main bogus answer wasto say “True, because eitherf(n)
has to grow at least as fast asg(n) or vice versa.” This and other incorrect answers did not work
with the exact definition of big-O. Some people got close to a valid counterexample by trying to define
two oscillating functions (e.g.,sin(n) and cos(n)); many of these attempts were correct in spirit, but
sometimes fell down on details such asf(n) andg(n) not tending to infinity.

(ii) True. If pre(u) < post(u) < pre(v) < post(v) then the DFS backtracks fromu before vertexv is 3pts
discovered. But if there were an edge betweenu andv then the search would have to explore this edge
(and hence discoverv) before backtracking fromu.

Most people got this right.

(iii) False. If pre(u) < post(u) < pre(v) < post(v) then there could still be a directed edge fromv to u; 3pts
this would be a cross edge for the DFS. Here is a small example,showing the pre- and post-visit labels
(the search starts ats):

vu

4,52,3

1,6
s

Most people got this right.

(iv) False. Let v be the vertex with lowest post-visit label. There could be a back edge fromv to one of its 3pts
ancestorsa, but it is not necessary thatv is reachable from every vertex that is reachable froma. Here
is a simple counterexample:

uv

4,52,3

1,6
a

Many people got this wrong. The most common mistake was to claim “True” because the only vertices
reachable fromv are its ancestors, and each of them certainly has a path tov. This argument fails to
realize that those ancestors may themselves be able to reachother vertices that are not ancestors ofv,
and indeed from whichv is not reachable at all, such asu in the above example.

(v) False. The same example as in part (iv) works here:a is the vertex with highest post-visit label, and3pts
all vertices are reachable froma, but not all vertices are in the same SCC.

Most people got this right.

(vi) False. Consider the tree below, which specifies a prefix-free code for an alphabet of five letters. This3pts
tree can arise (e.g.) from the following frequencies: 60%, 10%, 10%, 10%, 10%.

10%10% 10% 10%

60%

The most common mistake here was to say “True because otherwise the Huffman tree would not be a
full tree.” But as the example above demonstrates, the tree can be full without any leaves at level 2.

2. Divide-and-Conquer

(a) Recurrence:T (n) = 5T (n/2) + Θ(n2). 4pts
Solution: From the Master Theorem witha = 5, b = 2, d = 2, we get thatT (n) = Θ(nlogb a) =
Θ(nlog

2
5).

(b) Recurrence:T (n) = 3T (n/2) + Θ(n2). 4pts
Solution: From the Master Theorem witha = 3, b = 2, d = 2, we get thatT (n) = Θ(nd) = Θ(n2).

(c) Recurrence:T (n) =
√

nT (
√

n) + Θ(n). 4pts

Solution: Unwinding the recurrence, and replacing theΘ(n) term byCn for a constantC,1 we get

T (n) = n1/2T (n1/2) + Cn

= n1/2(n1/4T (n1/4) + Cn1/2) + Cn

= n3/4T (n1/4) + Cn + Cn

= n3/4(n1/8T (n1/8) + Cn1/4) + Cn + Cn

= n7/8T (n1/8) + Cn + Cn + Cn

...

= n1−2−k

T (n2−k

) + kCn. (1)

To get the base case we need to takek = log log n, for thenn2−k

becomesn1/ log n, which is a constant.
With this value ofk, the first term in (1) becomes a constant timesn1−2−k

, which is less thann, and this
is dominated by the second term which isCn log log n. Thus the solution isT (n) = Θ(n log log n).

Most people got into a mess with this one. Some tried to apply the Master Theorem, even though the
recurrence is not of the correct form for that theorem. Others started to unwind the recurrence but
failed to notice the correct form of the series as a function of k, the number of levels of unwinding (as
in (1) above). Many of these same people also didn’t correctly compute the number of levels, which
is log log n. Note that in fact this recurrence does workΘ(n) at every level; since there arelog log n
levels the solution isΘ(n log log n).

3. Dijkstra’s algorithm

(a) Here is the table produced by Dijkstra’s algorithm: 6pts

Iteration

Node 0 1 2 3 4 5

A 0 0 0 0 0 0

B ∞ 1 1 1 1 1

C ∞ ∞ 3 3 3 3

D ∞ 4 4 4 4 4

E ∞ 8 7 7 7 6

F ∞ ∞ 7 5 5 5

Most people got this right. The most common mistake was to setdist(E) = 6 in the fourth interation.

6pts
(b) Our goal is to figure out a path starting from vertexs at time t0, to a destinationz, in the shortest

possible time. The problem can be regarded as a shortest pathproblem if the travel time for each edge
is treated as the “length” of that edge. Now the major difference here with the standard setting of
the shortest path problem is that the “length” of each edge(u, v) is dynamicrather than a constant,
depending on the time at which we leave vertexu. However, because of the physicality constraint, we
may always assume that in any optimal path we always leave a vertex as soon as we arrive there (since
waiting at a vertex cannot decrease the total travel time). This means that we can compute an effective
length for each edge: namely, the length of edge(u, v) should be taken as̀(u,v)(time(u)), where
time(u) is the earliest arrival time atu. This earliest arrival time will be updated as the algorithm
proceeds, just as with the dist labels in the usual shortest paths problem. Hence only the update
portion of Dikjkstra’s algorithm needs to modified: when we examine the edge(u, v), we update the
labeltime(v) based ontime(u) + `(u,v)(time(u)). Here is the algorithm:

1Of course,Θ(n) is not quite the same as a constant timesn; what we really mean here is that we could carry out the following
calculations withΘ(n) replaced by the upper boundC1n and the lower boundC2n and get the same form of answer (with only the
constants changed). Hence our calculations will find the correctΘ-expression forT (n).

procedure ModifiedDijkstra(G, l, s, t0):
for all u ∈ V :

time(u) = ∞
prev(u) = nil

time(s) = t0

H = makeheap(V) (using time values as keys)
while H is not empty:

u = deletemin(H)
for all edges (u, v) ∈ E:
if time(v) > time(u) + `(u,v)(time(u)) :

time(v) = time(u) + `(u,v)(time(u))

prev(v) = u
decreasekey(H, v)

After running this algorithm, the fastest route froms to v can be obtained easily using by backtracking
using theprev labels.

The most common mistake here was just to say “use the current time stamp to query the black box to
get the travel time of the edge.” But many people did not indicate how to keep track of that time stamp,
and simply usedt in the query, rather thantime(u).

2pts
(c) As argued in part (b), the physicality constraint allowsus to assume that we leave a vertex as soon

as we arrive at it. This is the reason we can use the arrival time time(u) to query the travel time for
edges in the update operation. But if the physicality constraint is removed, we might be able to wait
at some vertexu until some timet′ > time(u) such thatt′ + `e(t

′) < time(u) + `e(time(u)). If
we could figure out the optimal waiting timet′ at u, then we could still use the above algorithm with
time(u) + `(u,v)(time(u)) replaced byt′ + `e(t

′). However, in the absence of other information we
don’t have any way to find the optimalt′.

Many people just said that removing the physicality constraint is the same as introducing negative
edges into the graph (without explaining why). Actually this answer is inadequate for at least two rea-
sons: (1) the connection with negative edges doesn’t reallymake sense; (2) even if this were the same
as introducing negative edges, it wouldn’t show that the algorithm fails because Dijkstra’s algorithm
does not necessarily always fail with negative edges.

4. Yet another MST algorithm

(a) First, since the graph is connected, clearly there is an MST of G. Now there are two reasonable4pts
approaches for this problem:

Using the Cut Property: Let X = ∅, S = {v}, and consider the cut betweenS andV − S. Clearly
ev is the minimum edge crossing this cut, so by the Cut Propertyev is in some MST ofG.

Proof by contradiction: Suppose there exists an MSTT of G thatdoesn’tcontainev. Add ev to T .
Obviously this creates a cycle. Consider the other edge incident onv, e′v . If we remove this edge, since
w(ev) < w(e′v), then we destroy the cycle and create a new treeT ′ with cost(T ′) < cost(T). This
contradicts the assumption thatT is an MST. Thus we can conclude thatall MSTs ofG containev .

Almost everyone got this question right. However, we need toapologize. We should have asked you
to prove thatev is in all MSTs ofG. Notice that this follows directly from the proof by contradiction,
but not from the Cut Property proof. The reason we should havedone this is because this fact greatly
simplifies the proof of part (b).

(b) There are basically three parts to this proof: (1) showing that adding all theev to X in one iteration of 5pts
the while loop is correct; (2) showing that the contraction operation does the right thing; (3) showing
that all the iterations taken together lead to the MST ofG.

(1) By the proof by contradiction in part (a), we know thatall theev selected in the first loop of the
algorithm belong to an MST ofG, and thus it is OK to add them toX. (This can also be deduced from
the weaker version of part (a), with a little bit of extra work.)

(2) First, note that the set of edgesev that are contracted form a forest (no cycles) inG; this follows
from the fact that all edge weights are unique. Contracting the edgesev causes each connected com-
ponent (tree) of this forest to collapse into a single vertex, which means that we will never consider
any of the other edges internal to the component. But this is correct because we already have a path
between all vertices in the component, and any further edgeswould create a cycle. Furthermore, con-
sider two edges coming out of such a component, both of which point to a nodew. Choosing either of
these edges will connect the component tow, and hence make every vertex in the component reachable
from w. Since all edge weights are unique, we know that one edge is cheaper. Thus, we can simply
throw away the more expensive edge. This is exactly what contraction does.

(3) After performing contraction, we now have a new set of vertices (essentially “super-vertices”)
that themselves need to be connected. We can again appeal to the proof by contradiction in part (a)
to choose edges for the MST of this reduced graphG′. This is exactly what happens in the second
iteration. We continue in this fashion until the vertex setV consists of a single super-vertex. At this
point we have created a single connected component whose edge setX forms a spanning tree ofG.

This was a hard question, especially because we didn’t give you the best tool to use from part (a).
Nonetheless, it was doable, and we were surprised that nobody quite managed full points. The most
common mistake was to miss parts of the analysis. When you areanalyzing an algorithm, you must
consider all the key operations. Many people either discussed the choice of minimum edges, or con-
traction, but not both. Both are needed in any completely correct answer!

(c) Let Vk be the set of vertices considered in thekth iteration. SoV1 = V . In the kth iteration, we 4pts
choose|Vk| edges to contract, but these edges are not necessarily all distinct. However, any edge can
be selected at most twice (e.g., edge(u, v) could be chosen both aseu and asev). Hence we contract
at least|Vk|/2 edges in this iteration, so we reduce the number of vertices by at least a factor of 2. But
clearly we only need to do this at mostlog2 |V | times before|V | reaches 1.

[Note that the algorithm might perform much better than this; in fact, it is even possible that we could
form the entire MST in one iteration!]

Most students got this. One common mistake was to jump from noticing that there are|Vk| contractions
at iteration k, and then say that thus there are|Vk|/2 vertices left over after the contractions. This
misses the core part of the argument. Another common mistakewas to say that in the best case there
are |Vk|/2 contractions, rather than in the worst case.

(d) Here is a concrete implementation of this algorithm thatuses disjoint sets with path compression and5pts
union-by-rank to handle contracting nodes. You did not needto provide this algorithm, but it will help
anchor the explanation below.

function MST(G = (V,E))
X = ∅
for each v ∈ V :
MAKESET(v)

while |V | > 1:
for each e = (vi, vj) ∈ E:

pi := FIND(vi)
pj := FIND(vj)
if pi 6= pj:

e∗pi
:= edge that minimizes min{l(e∗pi

), l(e)}
e∗pj

:= edge that minimizes min{l(e∗pi
), l(e)}

for each edge e∗v = (u, v):
add ev to X
UNION(u, v)

return X

The first for-loop inside the while finds the minimum for each vertex (including super-vertices).
The FIND calls avoid considering edges within the same connected component. We handle the
(u,w), (v,w) case cited in the problem description because we’re taking the min, which always
chooses the cheaper edge. Finally, UNION performs the actual contraction.

From part (c), the number of iterations isO(log |V |). To find the minimum for each vertex, we examine
each edge and perform a FIND on the vertices, so this takesO(|E| log∗ |V |) time. Finally, we do
O(|V | log∗ |V |) work for contractions. The total time isO(|E| log |V | log∗ |V |).
No one got full points on this question. Note that you didn’t have to go into the detail that we have
here. The problem was that most students did not say how they handled multiple edges like(u,w) and
(v,w) and did not talk about how to find the minimum after one iteration [Notice that it’s enough to
say that in the first iteration finding the minimum takesO(|E|) time; however later on you need to use
Union/Find to implicitly merge adjacency lists].

(e) The key observation in this part is to notice that we need away of doing UNIONs and FINDs inO(1) 3pts
time.

First, suppose MAKESET(vi) actually simply marks in a size-|V | array named parent that parent(i) =
i. When contracting two verticesvi, vj , i < j, we let parent(j) = parent(i). This type of UNION only
takesO(1) time. Furthermore, suppose we perform contractions in order of vertex labels: namely,
we contract the min edge forvi beforevj if i < j. By performing contractions in this order, we are
guaranteed that parent(parent(j)) = parent(j).

Finally, we add an edge relabeling phase after all the contractions are done. If an edge is(vi, vj) andi
is j’s parent, then this edge becomes(vi, vi). This relabeling ensures that we remove all references to
contracted vertices. This takesO(|E|) time.

This new set of edgesE′ ensures that if(vi, vj) ∈ E′, parent(i) = i and parent(j) = j and so FIND
calls on the next iteration will takeO(1) time.

This algorithm takesO(log |V |) iterations, but this time computing the minimum takesO(|E|) time
and relabeling takesO(|E|) time, and contraction takesO(|V |) time. So the final running time is
O(|E| log |V |).
This was a pretty difficult problem, and no one got it completely right. A small number of people
correctly observed that we needed to make Union-Find takeO(1) time for each operation. But no one
really said how we might do that. Quite a few people said it wasn’t possible to do better with Union-
Find: this is not true. We have a very structured problem where UNIONs and FINDs are performed
in a certain order, and this is what our solution exploits. A number of students said thatlog∗ |V | is
practically a constant, so we can ignore it in the run-time analysis. This is not correct! Big-O notation
is about function growth, andlog∗ |V | does go to infinity in the limit, even though it does so very
slowly.

