CS-170 Efficient Algorithms & Intractable ProblenSpring 2006, Professor Sinclair

Midterm 1
6:00-8:00pm, 2 March

Notes: There aréour questions on this midterm. Answer each questonip the space below

it, using the back of the sheet to continue yowwaar if necessary. If you need more space, use
the blank sheet at the enbtllone of the questions requires a very long answesp avoid

writing too much! Unclear or long-winded solutionswill be penalized. The questions vary
quite a bit in difficulty, so if you are having fimems with part of a question, leave it and try the
next one. The approximate credit for each quegienm is shown in the margin (total 65 points).
Points are not necessarily an indication of difftgu

Your Name: Your Section No:

. True or False?

For each of the following statements, say whethehestatement is True or False. Ifitis True,
give abrief explanation (~ one sentence); if it is False, gigemple counterexample.

() For any two non-negative functiof(s) andg(n), both of which tend to infinity, we must  3pts
have eithef(n) = O(g(n)) or g(n) = O(f(n)).

(il) Suppose the pre- and post-visit labels of two vestin a depth-first search onamdirected 3pts
graphG = (V, E) satisfy preq) < post() < pref) < posty). Then there can be no edge
betweeru andv.

(iif) Suppose the pre- and post-visit labels of two gestin a depth-first search owligected 3pts
graphG = (V, E) satisfy pre() < post() < pref) < post{). Then there can be no edge (in
either direction) betweemandv.

[continued on next page]



[Q1 continued]

(iv)In a DFS of a directed grah the set of vertices reachable from the vertek iwitvestpost- 3pts
visit label is a strongly-connected componen&of

(v) In a DFS of a directed grajgh the set of vertices reachable from the vertek highest 3pts
post-visit label is a strongly-connected comporuért.

(vi) If an optimal Huffman code has codewords of lerigtind 3, then it must also have at leas8pts
one codeword of length 2.

[continued on next page]



2. Divide-and-Conquer

Each of the following scenarios outlines a divigelaonquer algorithm. In each case, write
down the appropriate recurrence relation for thitg time as a function of the input size

and give its solution. You need not give a fultidation of your solution, but you should

indicate how you arrived at it (e.g., by appealmghe Master Theorem). You may assume that
n is of some special form (e.g., a power or multgfisome number), and that the recurrence has
a convenient base case with co$t).

(a) An input of sizen is broken down into five subproblems, each of size The time taken to 4pts
construct the subproblems, and to combine theirtisals, is®(n?).

(b) An input of sizen is broken down into three subproblems, each &gz The time taken 4pts
to construct the subproblems, and to combine #w@irtions, ig9(n).

(c) An input of sizen is broken down intan subproblems, each of siz&. The time taken to 4pts
construct the subproblems, and to combine theittisols, is@(n). [HINT: Write v asn*?
Note than'*?" is constant.]

[continued on next page]



3. Dijkstra’s algorithm

(a) Run Dijkstra’s algorithm on the following directgdaph, to compute distances from néde 6pts
to all the other nodes. Fill in the entries of thkle, showing the “dist” label of each node
after each iteration.

Iteration
Node 0 1 2 3 4 5
A 0
B 0
C o0
D 0
E 0
F o0

(b) Consider the following problem. You are given eedied graph representing a network ofgpts
highways, together with a black box that gives ffuepredicted travel timéor each edge in
the graph. Because traffic conditions vary, trase¢l time depends on the time of day at
which you start to traverse the edge. Specific#ilg travel time on edge= (u, v) is a
positive functior/g(t), such that if you leave nodeat timet then you will arrive av at time
t + £¢(t). The black box allows you to query the predidradel timef(t) for any edge and
any timet in advance. Travel times satisfy fhigysicalityconstraintt + £¢(t) <t' + £(t") if
t <t', i.e., you cannot arrive atearlier by leavingi later. Your goal is to figure out a route,
starting at timeg from nodes, to a destination nodg so that your predicted arrival timezat
is as early as possible. Explain carefully howntedify Dijkstra’s algorithm so that it solves
this problem. (You do not need to give the fukpdocode; just indicate how the algorithm
changes.)

(c) Explainbriefly why your algorithm breaks down if the physicatignstraint is removed.  2pts

[continued on next page]



4. Yet another MST algorithm

We have seen several algorithms for computing arviim Spanning Tree (MST) in a
connected, undirected graph. This question digsugst another algorithm for this problem.
For simplicity, we assume that all the edge weiginésdistinct.

(a) For each vertey, lete, be the edge with minimum weight incidentwnProve that there is @pts
MST of G that containg,.

(b) The new algorithm is based on the observation ih(py It uses the operation of 5pts
“contracting” an edge: when an edge {u, v} is contracted, its endpoints v are merged
into a single vertex. If either (or both) wfv have an edge to another vertexthen the
merged vertex also has an edgatdhe weight of this new edge is the minimum of the
weights of the edges{w} and {v, w}. Here is the algorithm:

function MST( G=( V, E))

X=0
while| V|>1:
foreach vin V:
e, = minimum edge weight incident on v
for each edge e
add eto X
contract e
return X

Using part (a), explain carefully why this algontloutputs a MST of.

[continued on next page]



[Q1 continued]

(c) Show that the number of iterations of the whiledd®O(log V|). [HINT: The number of  4pts
vertices remaining after the first iteration of thep is at mosiM|/2 — why?]

(d) Show that the entire algorithm can be implementedin in timeO(|E| log V| log* V). opts

(e) Can you reduce the running time@gE| log V|)? 3pts

[The end]



