
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout Midterm 1
Solutions
Lecturers: Christos Papadimitriou and Umesh Vazirani

Notes Midterm 1 Solutions for CS 170

Problem 1.

The pre and post numbers should have been the following: A(1,10), B(11,18), C(13,14),
D(2,9), E(3,6), F(12,17), G(7,8), H(4,5), I(15,16).

We have 5 strongly connected components:

IHG

B,C,FA,D,E

Problem 2.

1. Since Fn+1 = Fn + Fn−1 and Fn−1 < Fn, we can say that Fn+1 ≡ Fn−1 mod Fn. So
gcd(Fn+1, Fn) = gcd(Fn, Fn−1). We can repeatedly apply this relationship and get
that gcd(Fn+1, Fn) = gcd(F1, F0) = gcd(1, 1) = 1.

2. A number in Z1331 has an inverse if and only if it is relatively prime to 1331. The
numbers not relatively prime to 1331 are the multiples of 11 (since 1331 = 113). There
are 1331/11 = 121 of them. So there are 1331 − 121 = 1210 numbers with inverses.

3. We must choose e to be relatively prime to (p − 1)(q − 1) = 60. For convenience,
we will choose e to be 7, the smallest we can make e since e cannot be 1. Since
ed ≡ 1 mod (p − 1)(q − 1), we must find the inverse of 7 modulo 60. Either through
observation or the Extended Euclidean Algorithm, we can find that 7 · 43 = 301 ≡ 1
mod 60. So we should let d = 43.

4. By Fermat’s Little Theorem, we know 246
≡ 1 mod 47. Now we need to find 246 mod

46. We previously learned a lemma which stated that ak(p−1)(q−1)+1
≡ a mod pq.

Since 46 = 23 · 2, we have that 246
≡ 222·2+2

≡ 22
≡ 4 mod 46. So 2246

≡ 24
≡ 16

mod 47.

5. In each function call, we print one line and call the same function twice with input
that’s half the size. So we have, T (n) = 2T (n

2 ) + 1. We can use the Master Theorem
to solve this recurrence. We have that a = 2, b = 2, and d = 0. Since a > bd, we can
say T (n) = Θ(nlogba) = Θ(n).



Notes number Midterm 1 Solutions 2

6. We should choose ω to be a primitive fourth root of unity. So ω = e
πi

2 = i will work.
Our polynomial is P (x) = 1 + x2

− x3. A3 = P (ω3) = P (−i) = 1 − 1 − i = −i.

7. What allows us to divide the problem is the fact that our evaluation points (the n nth

roots of unity) are in positive-negative pairs. Specifically, w
n

2 = −1. What allows us
to keep dividing the problem is that the squares of these points maintain this property.
Specifically, if ω is an nth root of unity, then ω2 is an (n/2)th root of unity. The inverse
can also be done with an FFT using ω−1 since 1 + ω + ...ωn−1 = 0. (If you had all of
this, you got more than 5 points).

8. (a) FALSE.

A

B C

If we begin our search at A, proceed to B, and then to C, the edge (C,B) is a
cross edge.

(b) FALSE.

A B

If we begin at A, then the only edge is a tree edge.

Problem 3

First consider the naive algorithm: sequentially check each element. This takes linear time.
Our divide and conquer algorithm should try to beat this.

Let us first examine the middle element. If its value matches its index in the original
array, we’re done. If it is bigger than its index, then every subsequent element will also be
bigger than its index since the array values grow at least as fast as the indices. Similarly, if
it’s less than its index, then every previous element in the array will be less than its index
by the same reasoning. So after the comparison, we only need to examine half of the array.
We can recurse on the appropriate half of the array. If we continue this division until we
get down to a single element and we still have not found our desired element, then it is not
possible.

Find(A,x) // A is the array, x is the offset from the original array

mid = length(A)/2

if (A[mid] = mid+x) then return TRUE



Notes number Midterm 1 Solutions 3

if (length(A) = 1) then return FALSE

if (A[mid] > mid) then return Find(A[0:mid-1],x)

else return Find(A[mid+1,length(A)],x+mid+1)

We do a constant amount of work with each function call. So our recurrence relation
is T (n) < T (n

2 ) + O(1). We can apply the Master Theorem with a = 1, b = 2, and d = 0.
Since a = bd, we have T (n) = O(log n).


