CS 170 Fall 2008 - Solutions to Midterm 1

October 14, 2008

1 1. True: $n \log n \leq n^{2}$.
2. False: $\lim _{n \rightarrow \infty} \frac{n^{2}}{n \log n}=\infty$.
3. True: $2^{c \log _{2} n}=\left(2^{\log _{2} n}\right)^{c}=n^{c}$.
4. False (not always True): For $f(n)=c \log _{2} n=O(\log n)$, we have $2^{f(n)}=n^{c}$ which is not $O\left(n^{3}\right)$ for $c>3$.
5. True: $\log _{100} 50000<2.5$ because $100^{2.5}=100000>50000$; hence by Master's theorem, $T(n)=\Theta\left(n^{\log _{100} 50000}\right)=o\left(n^{2.5}\right)$.
6. False.
7. If we apply Master's theorem, $a=b=3$ and $c=1$; since $\log _{b} a=c$, we have $T(n)=n \log n$.
8. True: $\operatorname{gcd}(3,8)=1$ and in fact $3^{-1}=3$.
9. True: We cannot have $4 x=1 \bmod 8$, since then $4 x=8 k+1$, and 1 would be a multiple of 4 , a contradiction.
10. True: There are approximately $N / \ln (N)$ prime numbers $\leq N$. Thus the probability that an n-bit number is prime is approximately $\frac{N / \ln (N)}{N}=$ $\frac{1}{\ln (N)}$ for $N=2^{n}$. That would be $\approx \frac{\ln 2}{n}=\Theta\left(\frac{1}{n}\right)$.
11. True.
12. True: Let u be the vertex with lowest post order number that is not a sink. Then there exists some edge (u, v). If vertex v is visited while exploring u, then post $[v]<\operatorname{post}[u]$; hence that cannot happen. This means v is already visited once we begin to explore u, but then the edge (u, v) would be a backedge, and the graph would have a cycle, contradicting the fact that the graph is a DAG.
13. False: The graph with vertex set $V=\{1,2,3\}$ and edge set $E=$ $\{(1,2),(2,1),(1,3)\}$ is a counterexample. We can have pre[1] = 1 , $\operatorname{pre}[2]=2, \operatorname{post}[2]=3, \operatorname{pre}[3]=4, \operatorname{post}[3]=5, \operatorname{post}[1]=6$, and then vertex 2 has lowest post order but the strongly connected component $\{1,2\}$ is not a sink strongly connected component, since it has the outgoing edge $(1,3)$ to the strongly connected component $\{3\}$.
14. $\Theta(n)$: If the graph has a path of length $n-1$, the DFS stack may contain n vertices.
15. $O(\log n)$: The stack space is at $\operatorname{most} O(\log n)$, the depth of the tree.

2

1. $N=77=p q$ for $p=7, q=11$. We have $(p-1)(q-1)=60$ and $d=7^{-1} \bmod 60$. To calculate inverse of 7, we use Extended Euclid algorithm:

$$
\begin{aligned}
60 & =8 \cdot 7+4 \\
7 & =1 \cdot 4+3 \\
4 & =1 \cdot 3+1
\end{aligned}
$$

Thus

$$
\begin{aligned}
1 & =4-1 \cdot 3 \\
& =4-1 \cdot(7-1 \cdot 4))=2 \cdot 4+(-1) \cdot 7 \\
& =2 \cdot(60-8 \cdot 7)+(-1) \cdot 7=2 \cdot 60+(-17) \cdot 7
\end{aligned}
$$

Hence $(-17) \cdot 7=1 \bmod 60$ and $d=7^{-1}=-17=43 \bmod 60$.
2. Since $\operatorname{gcd}(3,60)=3 \neq 1$, we cannot choose d as inverse of e.

3

1. $, 1,-1,-i$.
2. $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & 1 & i\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ i \\ -1 \\ -i\end{array}\right)$.
3. $\mathrm{FFT}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\frac{1}{4}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & 1 & -i\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}\frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4}\end{array}\right)$.
4. Let u_{1}, \ldots, u_{k} be neighbors of u. Vertex u is on a cycle if and only if $\left[\operatorname{pre}\left(u_{1}\right), \operatorname{post}\left(u_{1}\right)\right], \ldots,\left[\operatorname{pre}\left(u_{k}\right), \operatorname{post}\left(u_{k}\right)\right]$ are disjoint intervals.
Proof: (\Rightarrow part) If u is not on a cycle, then removing u partitions the graph into k subgraphs G_{1}, \ldots, G_{k} such that $u_{i} \in V\left(G_{i}\right)$. DFS on u proceeds by first visiting u, then exploring G_{1} completely, then exploring G_{2} completely, and so on. Therefore $\operatorname{pre}\left(u_{1}\right)<\operatorname{post}\left(u_{1}\right)<$ $\operatorname{pre}\left(u_{2}\right)<\operatorname{post}\left(u_{2}\right)<\ldots<\operatorname{pre}\left(u_{k}\right)<\operatorname{post}\left(u_{k}\right)$.
$(\Leftarrow \operatorname{part})$ If $\left[\operatorname{pre}\left(u_{i}\right), \operatorname{post}\left(u_{i}\right)\right]$ intersects $\left[\operatorname{pre}\left(u_{j}\right), \operatorname{post}\left(u_{j}\right)\right]$, then without loss of generality, we can assume pre $\left(u_{i}\right)<\operatorname{pre}\left(u_{j}\right)<\operatorname{post}\left(u_{j}\right)<$ $\operatorname{post}\left(u_{j}\right)$. This means that there is a path P from u_{i} to u_{j} that does not use vertex u. Therefore u is on the cycle $\left(u, u_{i}\right)+P+\left(u_{j}, u\right)$.
5. In fact, we can have a graph where u and v are in the same strongly connected component, and yet pre and post intervals of u and v are disjoint: In directed graph $G=(V, E)$ with vertex set $V=\{a, b, u, v\}$
and edge set $E=\{a, b),(b, u),(u, a),(b, v),(v, a)\}$, we have $\operatorname{pre}(a)=$ $1, \operatorname{pre}(b)=2, \operatorname{pre}(u)=3, \operatorname{post}(u)=4, \operatorname{pre}(v)=5, \operatorname{post}(v)=$ $6, \operatorname{post}(b)=7, \operatorname{post}(a)=8$, and yet G is strongly connected.

5 1. To find the k th smallest number of n numbers:

1. Divide the n numbers into $n / 5$ groups of size 5 .
2. Let S be the set of the medians of these groups. Since finding the median of a set of size 5 takes $O(1)$ time, S can be found in $O(n)$ time.
3. Find $x=\operatorname{median}(S)$ recursively using $T(n / 5)$ time.
4. Split the n numbers into three sets: $S_{L},\{x\}, S_{R}$, where S_{L} is the set of numbers $<x$ and S_{R} is the set of numbers $>x$. Finding S_{L} and S_{R} can be done in $O(n)$ time.
5. If $k \leq\left|S_{L}\right|$, recursively find the k th smallest element in S_{L}; else if $k=\left|S_{L}\right|+1$, return x; else since $k>\left|S_{L}\right|+1$, recursively find the $\left(k-\left|S_{L}\right|-1\right)$ th smallest element in S_{R}. Since we know that $\left|S_{L}\right|,\left|S_{R}\right| \geq 3 n / 10$, we have $\left|S_{L}\right|,\left|S_{R}\right| \leq 7 n / 10$, and the recursive call takes $\leq T(7 n / 10)$ time.
The total running time amounts to

$$
T(n)=T(n / 5)+T(7 n / 10)+O(n) .
$$

2. We can prove by induction that $T(n) \leq c n$ for suitable constant c :

$$
T(n)=T(n / 5)+T(7 n / 10)+O(n) \leq c n / 5+c \cdot 7 n / 10+C n \leq c n,
$$

as long as $(1 / 5+7 / 10) c+C \leq c$ or equivalently $c \geq 10 C$. Therefore $T(n)=O(n)$.
(Notice that in the above analysis it is crucial that $1 / 5+7 / 10<1$. Would this recursive algorithm still have $O(n)$ running time if we had divided the numbers into groups of 3 rather than groups of 5 ?)

