
CS 170 Fall 2008 - Solutions to Midterm 1

October 14, 2008

1 1. True: n log n ≤ n2.

2. False: limn→∞
n2

n log n =∞.

3. True: 2c log2 n = (2log2 n)c = nc.

4. False (not always True): For f(n) = c log2 n = O(log n), we have
2f(n) = nc which is not O(n3) for c > 3.

5. True: log100 50000 < 2.5 because 1002.5 = 100000 > 50000; hence by
Master’s theorem, T (n) = Θ(nlog100 50000) = o(n2.5).

6. False.

7. If we apply Master’s theorem, a = b = 3 and c = 1; since logb a = c,
we have T (n) = n log n.

8. True: gcd(3, 8) = 1 and in fact 3−1 = 3.

9. True: We cannot have 4x = 1 mod 8, since then 4x = 8k + 1, and 1
would be a multiple of 4, a contradiction.

10. True: There are approximately N/ ln(N) prime numbers ≤ N . Thus
the probability that an n-bit number is prime is approximately N/ ln(N)

N =
1

ln(N) for N = 2n. That would be ≈ ln 2
n = Θ( 1

n ).

11. True.

12. True: Let u be the vertex with lowest post order number that is not
a sink. Then there exists some edge (u, v). If vertex v is visited while
exploring u, then post[v] < post[u]; hence that cannot happen. This
means v is already visited once we begin to explore u, but then the
edge (u, v) would be a backedge, and the graph would have a cycle,
contradicting the fact that the graph is a DAG.

13. False: The graph with vertex set V = {1, 2, 3} and edge set E =
{(1, 2), (2, 1), (1, 3)} is a counterexample. We can have pre[1] =
1, pre[2] = 2, post[2] = 3, pre[3] = 4, post[3] = 5, post[1] = 6,
and then vertex 2 has lowest post order but the strongly connected
component {1, 2} is not a sink strongly connected component, since
it has the outgoing edge (1, 3) to the strongly connected component
{3}.
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14. Θ(n): If the graph has a path of length n − 1, the DFS stack may
contain n vertices.

15. O(log n): The stack space is at most O(log n), the depth of the tree.

2 1. N = 77 = pq for p = 7, q = 11. We have (p − 1)(q − 1) = 60 and
d = 7−1 mod 60. To calculate inverse of 7, we use Extended Euclid
algorithm:

60 = 8 · 7 + 4,

7 = 1 · 4 + 3,

4 = 1 · 3 + 1.

Thus

1 = 4− 1 · 3
= 4− 1 · (7− 1 · 4)) = 2 · 4 + (−1) · 7
= 2 · (60− 8 · 7) + (−1) · 7 = 2 · 60 + (−17) · 7.

Hence (−17) · 7 = 1 mod 60 and d = 7−1 = −17 = 43 mod 60.

2. Since gcd(3, 60) = 3 6= 1, we cannot choose d as inverse of e.

3 1. 1, i, −1, −i.

2.
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3. FFT−1
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4 1. Let u1, . . . , uk be neighbors of u. Vertex u is on a cycle if and only if
[pre(u1), post(u1)], . . . , [pre(uk), post(uk)] are disjoint intervals.
Proof : (⇒ part) If u is not on a cycle, then removing u partitions
the graph into k subgraphs G1, . . . , Gk such that ui ∈ V (Gi). DFS
on u proceeds by first visiting u, then exploring G1 completely, then
exploring G2 completely, and so on. Therefore pre(u1) < post(u1) <
pre(u2) < post(u2) < . . . < pre(uk) < post(uk).
(⇐ part) If [pre(ui), post(ui)] intersects [pre(uj), post(uj)], then with-
out loss of generality, we can assume pre(ui) < pre(uj) < post(uj) <
post(uj). This means that there is a path P from ui to uj that does
not use vertex u. Therefore u is on the cycle (u, ui) + P + (uj , u).

2. In fact, we can have a graph where u and v are in the same strongly
connected component, and yet pre and post intervals of u and v are
disjoint: In directed graph G = (V,E) with vertex set V = {a, b, u, v}
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and edge set E = {a, b), (b, u), (u, a), (b, v), (v, a)}, we have pre(a) =
1, pre(b) = 2, pre(u) = 3, post(u) = 4, pre(v) = 5, post(v) =
6, post(b) = 7, post(a) = 8, and yet G is strongly connected.

5 1. To find the kth smallest number of n numbers:

1. Divide the n numbers into n/5 groups of size 5.
2. Let S be the set of the medians of these groups. Since finding

the median of a set of size 5 takes O(1) time, S can be found in
O(n) time.

3. Find x = median(S) recursively using T (n/5) time.
4. Split the n numbers into three sets: SL, {x}, SR, where SL is the

set of numbers < x and SR is the set of numbers > x. Finding
SL and SR can be done in O(n) time.

5. If k ≤ |SL|, recursively find the kth smallest element in SL; else
if k = |SL| + 1, return x; else since k > |SL| + 1, recursively
find the (k− |SL| − 1)th smallest element in SR. Since we know
that |SL|, |SR| ≥ 3n/10, we have |SL|, |SR| ≤ 7n/10, and the
recursive call takes ≤ T (7n/10) time.

The total running time amounts to

T (n) = T (n/5) + T (7n/10) + O(n).

2. We can prove by induction that T (n) ≤ cn for suitable constant c:

T (n) = T (n/5) + T (7n/10) + O(n) ≤ cn/5 + c · 7n/10 + Cn ≤ cn,

as long as (1/5 + 7/10)c + C ≤ c or equivalently c ≥ 10C. Therefore
T (n) = O(n).
(Notice that in the above analysis it is crucial that 1/5 + 7/10 < 1.
Would this recursive algorithm still have O(n) running time if we had
divided the numbers into groups of 3 rather than groups of 5?)
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