CS 170 Fall 2006 — Solutions to Midterm 2

November 16, 2006

Problem 1 [2 X 7 = 14 points]

1. False. We start with the all-false assignment.

2. True. Suppose, for the sake of contradiction, X is the symbol with the highest frequency and Y is
another symbol which is a higher leaf than X. Then, exchanging X and Y gives a shorter code which
is impossible since Huffman coding gives an optimal code.

3. True. Replace each edge of weight w by w unit length edges. The number of edges now is at most 10| E|
and the time taken in this is O(|E|). We now do a BFS starting from s and continuing only till we reach
t or explore the entire component of s. We can take care of the 0-length edges as follows: If u is being
processed by the BFS and (u,v) is a 0-length edge, then push v to the front rather than the back of the
queue. Let e be the number of edges in the component of s. Since this is connected, v < e — 1, where
v is the number of vertices in the component. Hence, the time taken is O(v + e) = O(e) = O(|E|).

4. True. After the first Find, the depth of x becomes 1. The two unions can increase it at most by 1
each. Hence, at the time of the next Find, x is at most 3 levels below the root of its tree, which means
the cost of Find is at most 3.

5. True. The solution is O(logn), which is also O(n).

6. True. It works in time O(|V||E|) in general. If |V| < |E|, this is O(|E|?). If |V| > |E|, note that
the length of the longest path can be at most |E| (there are no more edges). Hence, we only need to
update all the edges |E| times, instead of |[V| — 1 times. The time taken is again O(|E|?).

7. False. The longest edge in each cycle is guarenteed not to be in the tree, but the shortest edge need
not be in the tree either. The following graph provides a counterexample: the only MST is made of
edges AB, AD and BC. BD, which is the shortest edge in the cycle BCD, is not present in the tree.
In fact, it is the longest edge in the cycle ABD, hence both parts of the given statement cannot hold

simultaneously.



Problem 2 [6 points]

Kruskal’s algorithm: CD, BD. [1.5 pts]
Dijkstra’s algorithm from A: AC, BD. [1.5 pts]
Prim’s algorithm: BD, CD. [1.5 pts]

Bellman-Ford algorithm: Does not make sense. Bellman-Ford has no specified order in which it updates
edges. Hence, any two edges other than AB might be processed. [1.5 pts]

Problem 3 [15 points]

There are various ways of solving this problem. One solution is to construct a new graph which is identical
to the given graph except that weights are on the edges instead of the vertices. We set the weight of the edge
(u,v) as w(v), which is the weight of the the vertex v in the original graph. Since the hint suggests using
Dijkstra’s algorithm, we can assume the weights to be positive and run Dijkstra on the new graph. [10 pts]

We claim that the shortest path in the new graph is also the shortest path in the original graph. Let
S,U1, ..., Uk, t be any s —t path in the original graph. The weight of the path is the sum of weights of all the
vertices on it and is equal to w(s)+w(u1)+...+w(ur)+w(t). The weight of the same path in the new graph
isw(s,ur) +w(uy,uz) + ... +wlug_1,ug) + w(ug, t), which is equal to w(ui) +w(ug) + ... + wlug) + w(t).
Thus, the weights of all the paths in the old and new graphs only differ by w(s). Hence, the shortest paths
in the two graphs will be the same. 3 pts

The time taken in creating the new graph is O(|V|+|E]). Since, we then run Dijkstra on the new graph, and
the number of vertices and edges in the new graph is the same, the total running time is O((|V|+|E|) log |V]),
using a binary heap implementation. [2 pts]

Problem 4 [15 points]

e The problem with C[i] is that it does not permit us to write a recurrence. Suppose we know
C[1],...,C[i] and want to find C[i + 1]. However, C[1],...,C[i] do not give us information about
any sequence ending at ¢ to which we may possibly add a[i + 1]. For example, in the sequences
1,2,—1,-1,3 and —1,-1,1,2,3, C[4] = 3 for both, but the longest sequence includes a[5] in the
second one but not in the first.

e C[0] =0 and D[0] = 0.
e D[i] = max{0,a[i], D[i — 1] + a[i]}, C[i] = max{C[i — 1], D[i]}
e Output = C[n]

e We go through all elements in the array to find an ¢ such that D[i] = C[n]. This a[é] is the ending point
of a sequence which has sum equal to the optimal. We then start at a[¢] and proceed backwards adding
ali —1,a[i —2],...,a[j] till the first j such that a[i] + a[i — 1] + ...+ a[j] = C[n]. Then alj],...,a[i] is
the required set.

e We solve 2n + 2 subproblems (C[0], ..., C[n] and D[0],..., D[n]) and each takes constant time. Hence,
the total running time is O(n). Also, the final search through the array to find the set takes O(n) time.



