
UC Berkeley—CS 170 Midterm 2
Lecturer: Gene Myers November 9

Midterm 2 for CS 170

Print your name:
,

(last) (first)

Sign your name:

Write your section number (e.g. 101):

Write your sid:

One page of notes is permitted. No electronic devices, e.g. cell phones and calculators, are
permitted. Do all your work on the pages of this examination. If you need more space, you
may use the reverse side of the page, but try to use the reverse of the same page where the
problem is stated.

You have 80 minutes. The questions are of varying difficulty, so avoid spending too long on
any one question.

In all algorithm design problems, you may use high-level pseudocode.

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

Problem Score/Points

1 /10

2 /10

3 /10

4 /10

5 /10

Total /50

Midterm 2 2

1. Compression

(a) Consider the Lempel-Ziv compression scheme where the dictionary is limited to 8 words
and 3 bits are used to encode an index into the dictionary. Recall that the dictionary
begins with the empty string as the sole entry with index 0. Give the Lempel-Ziv
encoding for the string below and list the words in the dictionary in the order in which
they were added to it.

0|1|00|01|010|10|11|001|100|011|1

< ε, 0, 1, 00, 01, 010, 10, 11 >

000 0 000 1 001 0 001 1 100 0 010 0 010 1 011 1 110 0 100 1 000 1

(b) Uncompress the Lempel-Ziv string below under the assumptions that each index is
coded with 3 bits and the dictionary holds a maximum of 8 words. Also list, in order,
the words in the dictionary.

0001|0000|0100|0110|0011|0111|0101|1001|1011|0011

< ε, 1, 0, 00, 000, 11, 001, 01 >

1 0 00 000 11 001 01 0001 111 11

(c) Consider the alphabet { a, b, c, d, e, f } and assume the characters occur within a
file with frequencies .01, .25, .35, .20, .03, .16., respectively. Give the optimal Huffman
encoding tree for this situation.

1.0

.4

d,.2.2

.04 f,.16

a,.01 e,.03

b,.25 c,.35

.6

Put a 0 and a 1 label on the pair of edges out of each vertex as you please.

Midterm 2 3

2. Number Theory and RSA

(a) What is 328(mod 10)?

32 = 9(mod 10), 34 = 1(mod 10), 38 = 1(mod 10), 316 = 1(mod 10)

328 = 316 · 38 · 34 = 1 · 1 · 1 = 1(mod 10)

(b) What is the inverse of 32 (mod 113)?

From extended-Euclid’s algorithm (x′, y′)→ (x mod y, x) and (a, b)→ (b′, a′−b′bx/yc),
where ax + by = gcd(x, y).

x 113 32 17 15 2 1

y 32 17 15 2 1 0

a 17 -9 8 -1 1 1

b -60 17 -9 8 -1 1

So −60 · 32 + 17 · 113 = gcd(32, 113) = 1, so 32−1 = −60 = 53 (mod 113).

(c) Given a number n = pq that is the product of two prime numbers p and q, how many
numbers in Zn = {0, 1, . . . n− 1} do not have multiplicative inverses modulo n?

p + q − 1: ip for i ∈ [1, q − 1], iq for i ∈ [1, p − 1], and 0.

(unless p = q in which case there are p such numbers. No points deducted if you missed
this.)

(d) Give a decryption key (private key) for the public RSA key (77, 7).

The private key d = e−1(mod (p − 1)(q − 1) = 7−1(mod 60). As for problem 2.b we
use Extended Euclid:

x 60 7 4 3 1

y 7 4 3 1 0

a -5 3 -2 1 1

b 43 -5 3 -2 1

So 43 · 7− 5 · 60 = gcd(7, 60) = 1, so 7−1 = 43 (mod 60).

Midterm 2 4

3. Automaton Recognition

Consider a directed graph G = (V,E) where each edge is labeled with a character from
an alphabet Σ, and we designate a special vertex s as the start vertex, and another f as
the final vertex. We say that G accepts a string A = a1a2 . . . an if there is a path from
s to f of n edges whose labels spell the sequence A. Design an O((|V | + |E|)n) dynamic
programming algorithm to determine whether or not A is accepted by G.

(a) Formally define the set of sub-problems you will solve.

For v ∈ V and i ∈ [0, n], let:

A[v, i] = ∃ path from s to v spelling a1a2 . . . ai.

(b) Give your recurrence for the solution of a given sub-problem in terms of other sub-
problems.

A[v, i] =

{

ORw→v (label(v → w) = ai and A[w, i − 1]) if i > 0
v = s if i = 0

(c) Give a non-recursive pseudo-code specification of the algorithm.

A[s, 0]←true

for v ∈ V − {s} do

A[v, 0]←false

for i← 1 . . . n do

for v ∈ V − s do

{ A[v, i]← false

for w → v ∈ E do

if label(w → v) = ai and A[w, i − 1] then

A[v, i]← true

}
if A[t, n] then

print “Accept”
else

print “Reject”

Midterm 2 5

4. Palindrome Parsing

A palindrome is a word w1w2 . . . wk whose reverse wkwk−1 . . . w1 is the same string, e.g.
“abbabba”. Consider a string A = a1a2 . . . an. A partitioning of the string is a palindrome

partitioning if every substring of the partition is a palindrome. For example, “aba|b|bbabb|a|b|aba”
is a palindrome partitioning of “ababbbabbababa”. Design a dynamic programming algo-
rithm to determine the coarsest (i.e. fewest cuts) palindrome partition of A.

(a) Formally define the set of sub-problems you will solve.

For all 1 ≤ i ≤ j ≤ n we solve two subproblems:

P [i, j] = aiai+1 . . . aj is a palindrome (true/false), and

C[i, j] = no. of cuts in the best palindrome partition of aiai+1 . . . aj .

(b) Give your recurrence for the solution of a given sub-problem in terms of other sub-
problems.

P [i, j] =

ai = aj and P [i + 1, j − 1] if i < j − 1
ai = aj if i = j − 1
true if i = j

C[i, j] = min{ mink∈[i,j−1]{C[i, k] + C[k + 1, j]},

if P [i, j] then 0 else ∞}

(c) Give a non-recursive pseudo-code specification of the algorithm and state its complexity
in terms of n.

for i← 1 . . . n do

(P [i, i], C[i, i]) ← (true, 1)
for l← 1 . . . n− 1 do

for i← 1 . . . n− l do

{ j ← i + l
if l > 1 then

P [i, j]← (ai = aj) and P [i + 1, j − 1]
else

P [i, j]← (ai = aj)
C[i, j]←∞
for k ← i . . . j − 1 do

C[i, j]← min{C[i, j], C[i, k] + C[k + 1, j]}
if P [i, j] then

C[i, j]← 0
}

Best palindrome partition has C[1, n] cuts

The algorithm is O(n3). (This is the complexity you were expected to acheive.)

Midterm 2 6

4. Palindrome Parsing

A palindrome is a word w1w2 . . . wk whose reverse wkwk−1 . . . w1 is the same string, e.g.
“abbabba”. Consider a string A = a1a2 . . . an. A partitioning of the string is a palindrome

partitioning if every substring of the partition is a palindrome. For example, “aba|b|bbabb|a|b|aba”
is a palindrome partitioning of “ababbbabbababa”. Design a dynamic programming algo-
rithm to determine the coarsest (i.e. fewest cuts) palindrome partition of A.

(a) Formally define the set of sub-problems you will solve.

For all 1 ≤ i ≤ j ≤ n we solve the subproblems:

P [i, j] = aiai+1 . . . aj is a palindrome (true/false), and

and for all 0 ≤ i ≤ n we solve the subproblems:

C[i] = no. of cuts in the best palindrome partition of a1a2 . . . ai.

(b) Give your recurrence for the solution of a given sub-problem in terms of other sub-
problems.

P [i, j] =

ai = aj and P [i + 1, j − 1] if i < j − 1
ai = aj if i = j − 1
true if i = j

C[i] =

{

mink∈[0,i−1]{C[k] + 1 : P [k + 1, i]} if i > 0

0 if i = 0

(c) Give a non-recursive pseudo-code specification of the algorithm and state its complexity
in terms of n.

P [1, 1]← true

for j ← 2 . . . n do

{ P [j, j]← true

P [j − 1, j]← (aj−1 = aj)
for i← j − 2 . . . 1 do

P [i, j] ← (ai = aj) and P [i + 1, j − 1]
}

C[0]← 0
for i← 1 . . . n do

{ C[i]← C[i− 1] + 1
for k ← 1 . . . i− 2 do

C[i]← min{C[i], C[k] + P [k + 1, i]}
}

Best palindrome partition has C[n] cuts

The algorithm is O(n2). (Congratulations if you got this one.)

Midterm 2 7

5. Entropy and Huffman Codes [Hard]

Suppose that for alphabet Σ the probability of seeing character a is pa. Recall the formula
for the entropy of the alphabet E(Σ) =

∑

a∈Σ pa log2
1
pa

. We asserted in class that the
length of a Huffman encoded file is O(nE(Σ)). The essential fact needed to show this is
that for a character a, its depth in an optimal Huffman tree is O(log 1

pa

). Prove this with
a careful argument (Hint: Consider a node with this frequency and think about what must
be true of the frequencies of all the children immediately off the path from this node to the
root.)

Suppose that the leaf node v for character a is placed at depth k in an optimal Huffman
tree. Let w0 = v,w1, w2, . . . wk−1 be the sequence of nodes encountered from v going back
to the root of the tree, and let si be the child of wi not on this path. Let p(v) be the
probability of the tree rooted at v. The figure illustrates.

s_k−1

v=w_0

w_1

s_1

s_2

w_2

w_k−1

Consider sj for any j ≥ 2. Because sj−1 and wj−2 are joined before sj is joined to the
subtree rooted at wj−1 it must be that p(sj) ≥ p(sj−1) and p(sj) ≥ p(wj−2). Therefore,
p(sj) ≥ (p(sj−1) + p(wj−2))/2 = p(wj−1)/2 and p(wj) = p(wj−1) + p(sj) ≥ 1.5p(wj−1). By
induction it then follows that p(wk−1) ≥ 1.5k−2p(w1). But p(w1) ≥ pa and p(wk−1) = 1, so
it must be that pa1.5

k−2 ≤ 1 which implies that k ≤ log1 .51/pa + 2 = O(log 1/pa).

