Midterm 2 for CS 170

PRINT your name:
(last)
(first)

Sign your name:
Write your section number (e.g. 101):
Write your sid:

One page of notes is permitted. No electronic devices, e.g. cell phones and calculators, are permitted. Do all your work on the pages of this examination. If you need more space, you may use the reverse side of the page, but try to use the reverse of the same page where the problem is stated.

You have 80 minutes. The questions are of varying difficulty, so avoid spending too long on any one question.

In all algorithm design problems, you may use high-level pseudocode.
DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

Problem	Score/Points
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
Total	$/ 50$

1. Compression

(a) Consider the Lempel-Ziv compression scheme where the dictionary is limited to 8 words and 3 bits are used to encode an index into the dictionary. Recall that the dictionary begins with the empty string as the sole entry with index 0 . Give the Lempel-Ziv encoding for the string below and list the words in the dictionary in the order in which they were added to it.

0|1|00|01|010|10|11|001|100|011|1
$<\epsilon, 0,1,00,01,010,10,11>$

00000001001000111000010001010111110010010001
(b) Uncompress the Lempel-Ziv string below under the assumptions that each index is coded with 3 bits and the dictionary holds a maximum of 8 words. Also list, in order, the words in the dictionary.

0001|0000|0100|0110|0011|0111|0101|1001|1011|0011
$\langle\epsilon, 1,0,00,000,11,001,01>$
10000001100101000111111
(c) Consider the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ and assume the characters occur within a file with frequencies $.01, .25, .35, .20, .03, .16$., respectively. Give the optimal Huffman encoding tree for this situation.

Put a 0 and a 1 label on the pair of edges out of each vertex as you please.

2. Number Theory and RSA

(a) What is $3^{28}(\bmod 10)$?
$3^{2}=9(\bmod 10), 3^{4}=1(\bmod 10), 3^{8}=1(\bmod 10), 3^{16}=1(\bmod 10)$
$3^{28}=3^{16} \cdot 3^{8} \cdot 3^{4}=1 \cdot 1 \cdot 1=1(\bmod 10)$
(b) What is the inverse of $32(\bmod 113)$?

From extended-Euclid's algorithm $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x \bmod y, x)$ and $(a, b) \rightarrow\left(b^{\prime}, a^{\prime}-b^{\prime}\lfloor x / y\rfloor\right)$, where $a x+b y=g c d(x, y)$.

x	113	32	17	15	2	1
y	32	17	15	2	1	0
a	17	-9	8	-1	1	1
b	-60	17	-9	8	-1	1

So $-60 \cdot 32+17 \cdot 113=\operatorname{gcd}(32,113)=1$, so $32^{-1}=-60=53(\bmod 113)$.
(c) Given a number $n=p q$ that is the product of two prime numbers p and q, how many numbers in $Z_{n}=\{0,1, \ldots n-1\}$ do not have multiplicative inverses modulo n ?
$p+q-1: i p$ for $i \in[1, q-1]$, $i q$ for $i \in[1, p-1]$, and 0 .
(unless $p=q$ in which case there are p such numbers. No points deducted if you missed this.)
(d) Give a decryption key (private key) for the public RSA key (77, 7).

The private key $d=e^{-1}\left(\bmod (p-1)(q-1)=7^{-1}(\bmod 60)\right.$. As for problem 2.b we use Extended Euclid:

x	60	7	4	3	1
y	7	4	3	1	0
a	-5	3	-2	1	1
b	43	-5	3	-2	1

So $43 \cdot 7-5 \cdot 60=\operatorname{gcd}(7,60)=1$, so $7^{-1}=43(\bmod 60)$.

3. Automaton Recognition

Consider a directed graph $G=(V, E)$ where each edge is labeled with a character from an alphabet Σ, and we designate a special vertex s as the start vertex, and another f as the final vertex. We say that G accepts a string $A=a_{1} a_{2} \ldots a_{n}$ if there is a path from s to f of n edges whose labels spell the sequence A. Design an $O((|V|+|E|) n)$ dynamic programming algorithm to determine whether or not A is accepted by G.
(a) Formally define the set of sub-problems you will solve.

For $v \in V$ and $i \in[0, n]$, let:
$A[v, i]=\exists$ path from s to v spelling $a_{1} a_{2} \ldots a_{i}$.
(b) Give your recurrence for the solution of a given sub-problem in terms of other subproblems.

$$
A[v, i]= \begin{cases}O R_{w \rightarrow v} \\ v=s & \left(\operatorname{label}(v \rightarrow w)=a_{i} \text { and } A[w, i-1]\right) \\ \text { if } i>0 \\ \text { if } i=0\end{cases}
$$

(c) Give a non-recursive pseudo-code specification of the algorithm.

```
A[s,0]}\leftarrow\mathrm{ true
for v\inV-{s} do
    A[v,0]\leftarrowfalse
for }i\leftarrow1\ldotsn\mathrm{ do
    for }v\inV-s\mathrm{ do
        { }A[v,i]\leftarrow\mathrm{ false
            for }w->v\inE\mathrm{ do
                if label (w->v)=\mp@subsup{a}{i}{}\mathrm{ and A[w,i-1] then}
                A[v,i]}\leftarrow\mathrm{ true
    }
if }A[t,n]\mathrm{ then
    print "Accept"
else
    print "Reject"
```


4. Palindrome Parsing

A palindrome is a word $w_{1} w_{2} \ldots w_{k}$ whose reverse $w_{k} w_{k-1} \ldots w_{1}$ is the same string, e.g. "abbabba". Consider a string $A=a_{1} a_{2} \ldots a_{n}$. A partitioning of the string is a palindrome partitioning if every substring of the partition is a palindrome. For example, "aba|b|bbabb|a|b|aba" is a palindrome partitioning of "ababbbabbababa". Design a dynamic programming algorithm to determine the coarsest (i.e. fewest cuts) palindrome partition of A.
(a) Formally define the set of sub-problems you will solve.

For all $1 \leq i \leq j \leq n$ we solve two subproblems:

$$
\begin{aligned}
& P[i, j]=a_{i} a_{i+1} \ldots a_{j} \text { is a palindrome (true/false), and } \\
& C[i, j]=\text { no. of cuts in the best palindrome partition of } a_{i} a_{i+1} \ldots a_{j} .
\end{aligned}
$$

(b) Give your recurrence for the solution of a given sub-problem in terms of other subproblems.

$$
\begin{aligned}
& P[i, j]= \begin{cases}a_{i}=a_{j} \text { and } P[i+1, j-1] & \text { if } i<j-1 \\
a_{i}=a_{j} & \text { if } i=j-1 \\
\text { true } & \text { if } i=j\end{cases} \\
& C[i, j]=\min \left\{\begin{array}{l}
\min _{k \in[i, j-1]}\{C[i, k]+C[k+1, j]\}, \\
\text { if } P[i, j] \text { then } 0 \text { else } \infty\}
\end{array}\right.
\end{aligned}
$$

(c) Give a non-recursive pseudo-code specification of the algorithm and state its complexity in terms of n.
for $i \leftarrow 1 \ldots n$ do
$(P[i, i], C[i, i]) \leftarrow($ true, 1$)$
for $l \leftarrow 1 \ldots n-1$ do
for $i \leftarrow 1 \ldots n-l$ do
$\{\quad j \leftarrow i+l$
if $l>1$ then
$P[i, j] \leftarrow\left(a_{i}=a_{j}\right)$ and $P[i+1, j-1]$
else
$P[i, j] \leftarrow\left(a_{i}=a_{j}\right)$
$C[i, j] \leftarrow \infty$
for $k \leftarrow i \ldots j-1$ do
$C[i, j] \leftarrow \min \{C[i, j], C[i, k]+C[k+1, j]\}$
if $P[i, j]$ then
$C[i, j] \leftarrow 0$
\}
Best palindrome partition has $C[1, n]$ cuts
The algorithm is $O\left(n^{3}\right)$. (This is the complexity you were expected to acheive.)

4. Palindrome Parsing

A palindrome is a word $w_{1} w_{2} \ldots w_{k}$ whose reverse $w_{k} w_{k-1} \ldots w_{1}$ is the same string, e.g. "abbabba". Consider a string $A=a_{1} a_{2} \ldots a_{n}$. A partitioning of the string is a palindrome partitioning if every substring of the partition is a palindrome. For example, "aba|b|bbabb|a|b|aba" is a palindrome partitioning of "ababbbabbababa". Design a dynamic programming algorithm to determine the coarsest (i.e. fewest cuts) palindrome partition of A.
(a) Formally define the set of sub-problems you will solve.

For all $1 \leq i \leq j \leq n$ we solve the subproblems:

$$
P[i, j]=a_{i} a_{i+1} \ldots a_{j} \text { is a palindrome (true/false), and }
$$

and for all $0 \leq i \leq n$ we solve the subproblems:
$C[i]=$ no. of cuts in the best palindrome partition of $a_{1} a_{2} \ldots a_{i}$.
(b) Give your recurrence for the solution of a given sub-problem in terms of other subproblems.

$$
\begin{gathered}
P[i, j]= \begin{cases}a_{i}=a_{j} \text { and } P[i+1, j-1] & \text { if } i<j-1 \\
a_{i}=a_{j} & \text { if } i=j-1 \\
\text { true } & \text { if } i=j\end{cases} \\
C[i]= \begin{cases}\min _{k \in[0, i-1]}\{C[k]+1: P[k+1, i]\} & \text { if } i>0 \\
0 & \text { if } i=0\end{cases}
\end{gathered}
$$

(c) Give a non-recursive pseudo-code specification of the algorithm and state its complexity in terms of n.

$$
\begin{aligned}
& P[1,1] \leftarrow \text { true } \\
& \text { for } j \leftarrow 2 \ldots n \text { do } \\
& \text { \{ } \quad P[j, j] \leftarrow \text { true } \\
& P[j-1, j] \leftarrow\left(a_{j-1}=a_{j}\right) \\
& \text { for } i \leftarrow j-2 \ldots 1 \text { do } \\
& P[i, j] \leftarrow\left(a_{i}=a_{j}\right) \text { and } P[i+1, j-1] \\
& \text { Best palindrome partition has } C[n] \text { cuts }
\end{aligned}
$$

The algorithm is $O\left(n^{2}\right)$. (Congratulations if you got this one.)

5. Entropy and Huffman Codes [Hard]

Suppose that for alphabet Σ the probability of seeing character a is p_{a}. Recall the formula for the entropy of the alphabet $E(\Sigma)=\sum_{a \in \Sigma} p_{a} \log _{2} \frac{1}{p_{a}}$. We asserted in class that the length of a Huffman encoded file is $O(n E(\Sigma))$. The essential fact needed to show this is that for a character a, its depth in an optimal Huffman tree is $O\left(\log \frac{1}{p_{a}}\right)$. Prove this with a careful argument (Hint: Consider a node with this frequency and think about what must be true of the frequencies of all the children immediately off the path from this node to the root.)

Suppose that the leaf node v for character a is placed at depth k in an optimal Huffman tree. Let $w_{0}=v, w_{1}, w_{2}, \ldots w_{k-1}$ be the sequence of nodes encountered from v going back to the root of the tree, and let s_{i} be the child of w_{i} not on this path. Let $p(v)$ be the probability of the tree rooted at v. The figure illustrates.

Consider s_{j} for any $j \geq 2$. Because s_{j-1} and w_{j-2} are joined before s_{j} is joined to the subtree rooted at w_{j-1} it must be that $p\left(s_{j}\right) \geq p\left(s_{j-1}\right)$ and $p\left(s_{j}\right) \geq p\left(w_{j-2}\right)$. Therefore, $p\left(s_{j}\right) \geq\left(p\left(s_{j-1}\right)+p\left(w_{j-2}\right)\right) / 2=p\left(w_{j-1}\right) / 2$ and $p\left(w_{j}\right)=p\left(w_{j-1}\right)+p\left(s_{j}\right) \geq 1.5 p\left(w_{j-1}\right)$. By induction it then follows that $p\left(w_{k-1}\right) \geq 1.5^{k-2} p\left(w_{1}\right)$. But $p\left(w_{1}\right) \geq p_{a}$ and $p\left(w_{k-1}\right)=1$, so it must be that $p_{a} 1.5^{k-2} \leq 1$ which implies that $k \leq \log _{1} .51 / p_{a}+2=O\left(\log 1 / p_{a}\right)$.

