
CS 170, Fall, 2004, Midterm 1, Myers 
 
One page of notes is permitted. No electronic devices, e.g. cell phones and calculators, are 
permitted. Do all your work on the pages of this examination. If you need more space, you may 
use the reverse side of the page, but try to use the reverse of the same page where the 
problem is stated.  

You have 80 minutes. The questions are of varying difficulty, so avoid spending too long on 
any one question.  

In all algorithm design problems, you may use high-level pseudocode.  

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.  
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Figure 1: Graph for Problem 1. Assume for all figures that the adjacency lists are ordered so 
that vertices are ordered in alphabetical order in an adjacency list. 
 
For example, the adjacency list of A has the edge to B before the edge to D.  

1. DFS Execution  

Draw the DFS tree of the graph in Figure 1 that will result if the first call to DFS is on vertex A 
and label each vertex with its pre(in)-and post(out)-order numbers. As per our standing 
convention, draw tree edges as solid lines, and back, cross, and forward edges as dashed 
lines. Put a ’B’, ’C’, or ’F’ on each dashed line according to whether it is a back, cross, or 
forward edge.  
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Figure 2: Graph for Problem 2.  

2. Dijkstra Execution  

Execute Dijkstra’s algorithm on the graph of Figure 2 starting at vertex A. If there are any ties, 
the vertex with the lower letter comes first.  

(a) List the vertices in the order in which they are deleted from the priority queue and for each 
the shortest distance from A to the vertex.  
(b) Draw the shortest paths tree that results  
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Figure 3: Graph for Problem 3.  

3. Prim and Kruskal Executions  

(a) Execute Prim’s algorithm on the graph of Figure 3 starting at vertex A. If there are any ties, 
the vertex with the lower letter comes first. List the edges in the order in which they are 
added to the tree.  

 

 (b) Execute Kruskal’s algorithm on the graph of Figure 3 starting at vertex A. Assume that 
equal weight edges are ordered lexicographically by the labels of their vertices assuming 
that the lower labeled vertex always comes first when specifying an edge, e.g. (C, E) is 
before (C, F) which in turn is before (D, G). List the edges in the order in which they are 
added to the developing forest.  
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4. True/False  

For each statement below, say whether it is true or false, and give a one 
sentence and/or one picture explanation.  

(a) In an undirected graph, we write s ~k t if and only if there are k vertex disjoint 
paths between vertices s and t. Is ~k is an equivalence relation for all choices 
of k?  

 

 (b) T(n) = 4T(n/2) + log n
     

is solvable with the Master Theorem.  

 
 
 
 (c) Suppose T is a shortest paths tree for Dijkstra’s algorithm. After adding c > 0 to every edge 

in the graph, T is still a shortest paths tree for the modified graph.  
 

 

 (d) It is possible to find a heaviest weight path of exactly k edges from s to each vertex in a 
directed graph in O(kE) time.  

 

 (e) The heaviest edge in a graph cannot belong to a minimum spanning tree.  
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5. Recurrence Equation  
Give a Θ characterization of the function T(n) that satisfies the recurrence  

T(n)= T(2n/3)+ (log
2 
n)2 

Prove your answer correct.  
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6. PERT Diagrams  

A PERT diagram is a business standard for planning and charting a multi-task project. Each 
task to be performed is modeled as a vertex. The longest and shortest time, short(v) and 
long(v), are given for each task v. In addition, there are dependencies between the tasks 
modeled as directed edges, where v → w if task v must precede task w. For example, in a 
construction project the electrical and plumbing cannot be done until the framing has been 
completed.  

Given a directed graph for a PERT chart, along with the short and long values for each vertex, 
give an algorithm that first checks that the diagram is acyclic, and then if so, gives the most 
optimistic (shortest) and most pessimistic (longest) completion times for the entire project.  
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7. Minimum Weight Cycle  
 
Consider a positively weighted directed graph. Design the most efficient algorithm you can for 
finding a minimum weight simple cycle in the graph. Be sure to prove that your algorithm is 
correct and to argue carefully its running time.  

 


