UC Berkeley—CS 170 Final
Lecturer: Gene Myers December 16

Final for CS 170

Myers Gene

PRINT your name: ,
(last) (first)

Three pages of notes are permitted. Two from your prior midterms and a new one pre-
pared specifically for the final. No electronic devices, e.g. cell phones and calculators, are
permitted. Do all your work on the pages of this examination. If you need more space, you
may use the reverse side of the page, but try to use the reverse of the same page where the
problem is stated.

You have 3 hours. The questions are of varying difficulty, so avoid spending too long on
any one question.

In all algorithm design problems, you may use high-level pseudocode.

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

Problem | Score/Points
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Total /60

S| Y | W N~




Final 2

1. Network Flow

Find the maximal flow in the following network. Give each augmenting path and the net
flow gain obtained (we give the first one). Use the back sheet of the previous page for your
work.

a >
10
S = C
k\ 5 \
b > e
Augmenting Path | Net Flow Gain
s-a-d-t|4
s-a-c-d-t]2
s-c-d-t|1
s-c-d-t |5
s-b-e-t]2
Total | 14

Draw the residual graph at the conclusion of the algorithm, and draw or list a minimum
cut of the graph.

Augmenting Path | Net Flow Gain
a-d|4
c-d|3
c-el|d
b-e|2
Total | 14
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2. Linear Programming

The Canine Products company has two dogfood products, Frisky Pup and Husky Hounds,
that are made from a blend of two raw materials, cereal and meat. 1 pound of cereal and 1.5
pounds of meat are needed to make a package of Frisky Pup and it sells for $7 a package. 2
pounds of cereal and 1 pound of meat are needed to make a package of Husky Hound and it
sells for $6 a package. Raw cereal costs $1 per pound and raw meat costs $2 per pound. It
also costs $1.40 to package the Frisky Pup and $.60 to package the Husky Hound. A total
of 240,000 pounds of cereal and 180,000 pounds of meat are available per month. The only
production bottleneck is that the factory can only package 110,000 bags of Frisky Pup per
month. Management would like to maximize profit.

(a) Formulate the problem as a linear program, be sure to explain your formulation by stat-
ing what each variable represents, the reason for each contraint, and how the objective
was formulated.

Let g be the number of packages of product S produced per month where f = Frisky
Pup and h = Husky Hound. Figuring the sales price less the cost of packaging and raw
inputs, the profit on each package of Frisky Pup is $1.60 and $1.40 for Husky Hound.
Thus we have:

max 1.6z ¢ + 1.4z, (total profit) subject to

ley 42z, < 240,000 (constrained imposed by available amount of cereal)
1.5z 4+ 1z, < 180,000 (constrained imposed by available amount of raw meat)
xy < 110,000 (constraint imposed on package capacity for Frisky Pup)
Tp,xp > 0 (producing a negative number of packages would be non-sensical)

(b) Graph the feasible region, give the coordinates of every extermal point, and circle the
extremal point maximizing profit. What is the maximum profit possible?

A

X_h (in thousands)

(0,120 o .
— Optimum is here with value $222,000

/

(60,90)

(1.6,1.4)

(12Q,15)
\ x_f (in thousands)

Y

(0,0) (110,0)
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(c) Give the dual formulation of your LP problem. What is the intuitive meaning of each
of the dual variables?

We view the dual LP as a valuation problem and ask what the value per pound of
cereal, y., the value per pound of meat, y,,, and the value per package of Frisky Pup
packaging, y,.

min 240, 000y, + 180, 000y, + 110,000y, (total value) subject to

lye + 1.5y + 1y, > 1.6 (value of a package of Frisky Pup)
2y. + ly,, > 1.4 (value of a package of Husky Hound)
Y, Y2, Y3 > 0 (negative valuations make no sense)
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3. Bottleneck Shortest Paths

Consider a weighted directed graph G = (V, E) where the weight w(u — v) on any edge
u — v is a positive integer. Let the bottleneck length of a path be the weight of the edge in
the path with the greatest weight. Let the bottleneck distance b(v,w) from v to w be the
minimum of the bottleneck lengths of all paths from v to w. For a given source vertex s,
design a single-source shortest bottleneck path algorithm, i.e. one that computes b(s,v) for
all v. Be sure to justify the correctness of your algorithm, give a pseudo-code formulation
of it, and state and justify its worst-case time complexity.

Design/Correctness: The primary observation is that for any given distance d, all vertices
of distance d or less from s are exactly those reachable from s along the subgraph of all
edges of weight not greater than d. Thus we seek to compute the distance to vertices in
increasing order of distance and clearly it suffice to examine the weights of the edges as
every distance will correspond to one of these F values.

We maintain a heap such that at the start of each iteration the following inductive
invariant is true: If the smallest edge in the heap has weight d, then every vertex of distance
less than d has been found, and all the edges of weight d-or-more whose source is one of
these vertices is in the heap. In an iteration of the algorithm, we extract the next minimum
edge, determine all the vertices that can be reached through that edge along edges of equal
or lesser score, and update the induction.

procedure Search(v: vertex, d: weight)
{ D] —d
for v —u € F do
if w(v — u) < d and D[u] = co then
Search(u,d)
else
Add v — u to Heap

}

D[] « o0 Vv
D[s] <0
Heap «— {s — v}
while Heap # () do
{ e(=v— u) < extract min Heap
if D]u] = oo then
Search(u,w(e))
}

Complexity: An edge is added to the heap only if its source has just been assigned its
distance (if then). Therefore each edge is added to the heap at most once. Moreover,
Search is only called when a vertex is about to be assigned its and so is not called more
than V' times. The algorithm is thus O(Flog V') in the worst case.
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4. Finding a Path of a Specific Weight

Consider a weighted directed graph G = (V, E) where the weight w(u — v) on any edge
u — v is a positive integer. For a given source s, sink ¢, and integer k > 0, design a dynamic
programming algorithm that determines if there is a path (it need not be simple) from s to
t of weight exactly k.

(a) Formally define the set of sub-problems you will solve.
For v € V and i € [0, k], let:
Pathlv,i] = 3 path from s to v of weight 1.

(b) Give your recurrence for the solution of a given sub-problem in terms of other sub-
problems.

OR,—, Pathlu,i —w(u —v)] ifi>0

Path[”’z]:{v:s ifi=0

(¢) Give a non-recursive pseudo-code specification of the algorithm and state its complexity
in terms of V, F, and k.

Path[s, 0] «true
forveV —{s} do
Path[v, 0] —false
fori—1...kdo
for v €V do
{ Path|v,i] < false
for u — v e Edo
if Pathlu,i — w(u — v)] then
Path[v,i] « true
}
if Path[t, k] then
print “Yes”
else
print “No”

By inspection the algorithm takes O((V + E)k) time.
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5. NP-Completeness

Consider an undirected graph G = (V, E). A k-coloring of the graph is an assignment of k
distinct colors to the vertices of the graph in such a way that no two vertices assigned the
same color are adjacent (i.e. have an edge between them). The GRAPH-COLORABILITY

problem is to find a coloring involving the fewest colors.

(a) State precisely the decision version of the GRAPH-COLORABILITY problem.

Given an undirected graph G and integer k > 0, can the graph be colored with just k
colors?

(b) Show that it is in NP.

One can guess a coloring, by producing a list of the vertices and its associated color
assignment. This guess, or verification certificate, is certainly polynomial in the size of
G. Verification simply entails checking that only k colors are assigned, and examing
every edge of the graph and checking to see if the colors assigned to the vertices at each
end are distinct. This is easily accomplished in O(V + E) time.
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(c¢) Next we show that GRAPH-COLORABILITY is NP-hard by giving a polynomial reduc-
tion from 3-SAT (i.e. is a given 3-CNF formula satisfiable) to GRAPH-COLORABILITY.
Suppose you are given a formula with m clauses C; and n variables x;. Construct a
graph with 3n + m vertices vi,ve,... vy, T1,%2,...%n, T1,22,... Ty, and c1,Co, ..., Cm.
Add exactly the following edges:

v;,v;) for all 7 # j.

v;,xj) and (v;, Z;) for all i # j.
x;, x;) for all i.
)

xi,¢j) if z; is not a term in clause Cj, and (Z;, ¢;) if Z; is not a term in clause Cj.

Prove that for n > 4, the constructed graph is n + 1 colorable if and only if the 3-CNF
from which it is constructed is satisfiable. (Hint: The v; vertices form a complete graph
or clique of n vertices and so must each be assigned a distinct color. Think about what
to do with your one extra color.)

First suppose that the 3-SAT formula is satisfiable. We show that we can color the
constructed graph with n + 1 colors. Assign a distinct color to each of the v;. For each
variable x;, if it is true, then assign vertex x; the same color as v; and assign T; the
n + 15¢ color, which we call the special color. Switch the assignment of colors if x; is
false. Since the formula is satisfiable, for each clause C; there is at least one literal that
is true and the corresponding vertex was assigned a color other than the special color.
Color vertex c¢; with that color. ¢; is not adjacent to that vertex, and no other literal
vertex has the color. Thus we have produced an n 4+ 1 coloring.

Now suppose that there is an (n + 1) coloring of the constructed graph. Each of the
v; must be assigned a unique color as their subgraph is a clique. The vertices x; and
Z; cannot have the same color, nor the color of any v; except for v;. Therefore one has
the color of v; and the other has the (n + 1)*¢ color, which we call the special color. 1f
x; has the color of v;, set z; to true, otherwise set it to false. It remains only to show
that each clause is satisfied by this assignment. If C; were false, then c¢; is connected
to three x vertices, corresponding to the complement of the literals in the clause, that
do not have the special color, and to 2(n — 3) pairs of x vertices corresponding to the
n — 3 variables not in the clause, of which n — 3 are non-special and at least one is the
special color as n > 4. Thus Cj is adjacent to n + 1 colors and would have to use an
additional color. Therefore C; must be true.
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6. True/False

For each statement below, say whether it is true or false, and a one sentence and/or one
picture explanation.

(a)

(b)

()

3z = 5(mod 22) has a unique solution among the integers in [0, 21].

True. 3 and 22 are relatively prime.

If a?~! = 1(mod p) for all a # 0(mod p), then p is prime.

False. Charmichael numbers, which are composite, also satisfy the hypothesis.

If the feasible region for a linear program is unbounded, then there is no solution.

False. min x subject to > 0 has an unbounded feasible region with a unique solution.

Forward edges are impossible in a breadth first search.

True. All vertices adjacent to a vertex are examined when it is popped from the stack.

Integer linear programming is NP-hard.

True. We saw that we could solve vertex cover, an NP-complete problem, with ILP.

The weight of a minimum spanning tree in a positively weighted undirected graph is
always less than the weight of a minimum spanning cycle (Hamiltonian Tour) of the
graph.

True. Deleting any edge from a Hamiltonian Tour gives a spanning tree.

If Aisin NP, and B is NP-complete, and A <, B then A is NP-complete.
False. One has to show that B <, A, i.e. that A is harder than B.

The Lempel-Ziv compression algorithm as presented in class always returns a file shorter
than the one submitted to it.

False. The coding of '0’ is ’00’ assuming a dictionary of minimal size 1!

All NP-complete problems are equally hard to approximate in polynomial time.

False. Vertex cover has p = 2 while maximum clique has p > n%.

If all capacities in a network flow are rational numbers, then the maximum flow will be
a rational number. (A rational number is the ratio p/q of two integers.)

True. Max flow equal min cut equals the sum of edge capacities equals a rational
number.



