
UC Berkeley—CS 170 Midterm 1
Lecturer: Tom Henzinger October 8, 2002

Midterm 1 for CS 170

Choose 5 out of the following 6 problems. Good luck!

Problem 1. [Divide and conquer] (30 points)

Suppose there are three alternatives for dividing a problem of size n into subproblems of
smaller size: if you solve 3 subproblems of size n

2
, then the cost for combining the solutions

of the subproblems to obtain a solution for the original problem is Θ(n2
√

n); if you solve
4 subproblems of size n

2
, then the cost for combining the solutions is Θ(n2); if you solve

5 subproblems of size n
2
, then the cost for combining the solutions is Θ(n log n). Which

alternative do you prefer and why?

Problem 2. [Lower bounds] (30 points)

Consider the following problem: given an array A[1..n] of distinct integers, and a number
1 ≤ k ≤ n, find any one of the k largest elements in A. For example, if k = 2, it is ok to
return the largest or second largest integer in A, without knowing if the return value is the
largest or if it is the second largest array element.

(a) Give an algorithm that solves this problem using no more that n − k comparisons of
array elements.

(b) Argue that every algorithm that solves this problem must, in the worst case, perform
at least n− k comparisons.

Problem 3. [High school] (30 points)

You are a guidance counselor in charge of putting high school students into one of two
study halls. It doesn’t matter how many students are in each study hall; what does matter
is that certain pairs of students do not get along well and would cause a major disruption
if they were placed in the same study hall. There are n students and you have a list of b

pairs of students who shouldn’t be placed together. Give an algorithm that determines in
time O(n+ b) whether it is possible to allocate the students to the two study halls without
violating the b constraints. If it is possible to perform such a designation, your algorithm
should produce it. (Note that some students may occur multiple times in the list of “bad”
pairs, but no student would be paired with him/herself.)

Problem 4. [Minimum spanning trees] (30 points)

Somebody proposes the following recursive algorithm to find a minimum spanning tree
(MST) of a connected undirected graph G = (V, E) with edge weights:



Midterm 1 2

First, partition the nodes V into two non-empty sets, S and V − S, so that
each of the resulting parts of the graph, call them GS and GV−S , is connected.
Second, recursively find a MST TS for the subgraph GS , and a MST TV−S for
the subgraph GV−S . Third, construct from TS and TV−S a spanning tree for
G by choosing from all edges {v, w} ∈ E with v ∈ S and w ∈ (V − S) one of
minimum weight.

Argue that this algorithm always finds a MST of G (for example, by demonstrating that it
is an instance of the generic MST algorithm from class), or give a counterexample.

Problem 5. [Hashing] (30 points)

Suppose we have a hash function h that, given a uniform distribution of input keys from a
set U , maps each key with equal probability to one of m buckets. Suppose further that we
are given a sequence y1, y2, . . . , yn of keys to be hashed, each chosen uniformly at random
from U . The i-th hash causes a collision if h(yi) = h(yj) for some j < i. Hence there are
between 0 and n− 1 collisions. We want to compute the expected number of collisions.

(a) Assume that n = 3 and m ≥ 3. What is wrong with the following argument? When
we hash y1, then there cannot be a collision. When we hash y2, then the probability
of a collision with y1 is 1

m
. When we hash y3, then the probability of a collision with

y1 is 1

m
, and the probability of a collision with y2 is 1

m
. Hence the expected number of

collisions is 3

m
.

(b) Still assuming n = 3 and m ≥ 3, what is the correct value for the expected number of
collisions and why?

Problem 6. [Min cut] (30 points)

To determinize a randomized algorithm means to remove the random choices that the
algorithm makes and replace them by deterministic (reproducible) decisions. Somebody
determinizes the randomized min-cut algorithm from class so that in each contraction step,
the algorithm always picks one of the edges with maximum weight (ties are handled in some
unspecified manner).

(a) The input to a min-cut algorithm is a connected undirected graph with edge weights.
Argue that if the input graph is a tree, then the determinized algorithm always finds a
minimum cut.

(b) Give an input graph for which the determinized algorithm does not find a minimum
cut (no matter how ties are handled).


