Midterm 1 for CS 170

Choose 5 out of the following 6 problems. Good luck!
Problem 1. [Divide and conquer] (30 points)
Suppose there are three alternatives for dividing a problem of size n into subproblems of smaller size: if you solve 3 subproblems of size $\frac{n}{2}$, then the cost for combining the solutions of the subproblems to obtain a solution for the original problem is $\Theta\left(n^{2} \sqrt{n}\right)$; if you solve 4 subproblems of size $\frac{n}{2}$, then the cost for combining the solutions is $\Theta\left(n^{2}\right)$; if you solve 5 subproblems of size $\frac{n}{2}$, then the cost for combining the solutions is $\Theta(n \log n)$. Which alternative do you prefer and why?

Problem 2. [Lower bounds] (30 points)

Consider the following problem: given an array $A[1 . . n]$ of distinct integers, and a number $1 \leq k \leq n$, find any one of the k largest elements in A. For example, if $k=2$, it is ok to return the largest or second largest integer in A, without knowing if the return value is the largest or if it is the second largest array element.
(a) Give an algorithm that solves this problem using no more that $n-k$ comparisons of array elements.
(b) Argue that every algorithm that solves this problem must, in the worst case, perform at least $n-k$ comparisons.

Problem 3. [High school] (30 points)

You are a guidance counselor in charge of putting high school students into one of two study halls. It doesn't matter how many students are in each study hall; what does matter is that certain pairs of students do not get along well and would cause a major disruption if they were placed in the same study hall. There are n students and you have a list of b pairs of students who shouldn't be placed together. Give an algorithm that determines in time $O(n+b)$ whether it is possible to allocate the students to the two study halls without violating the b constraints. If it is possible to perform such a designation, your algorithm should produce it. (Note that some students may occur multiple times in the list of "bad" pairs, but no student would be paired with him/herself.)

Problem 4. [Minimum spanning trees] (30 points)

Somebody proposes the following recursive algorithm to find a minimum spanning tree (MST) of a connected undirected graph $G=(V, E)$ with edge weights:

First, partition the nodes V into two non-empty sets, S and $V-S$, so that each of the resulting parts of the graph, call them G_{S} and G_{V-S}, is connected. Second, recursively find a MST T_{S} for the subgraph G_{S}, and a MST T_{V-S} for the subgraph G_{V-S}. Third, construct from T_{S} and T_{V-S} a spanning tree for G by choosing from all edges $\{v, w\} \in E$ with $v \in S$ and $w \in(V-S)$ one of minimum weight.

Argue that this algorithm always finds a MST of G (for example, by demonstrating that it is an instance of the generic MST algorithm from class), or give a counterexample.

Problem 5. [Hashing] (30 points)

Suppose we have a hash function h that, given a uniform distribution of input keys from a set U, maps each key with equal probability to one of m buckets. Suppose further that we are given a sequence $y_{1}, y_{2}, \ldots, y_{n}$ of keys to be hashed, each chosen uniformly at random from U. The i-th hash causes a collision if $h\left(y_{i}\right)=h\left(y_{j}\right)$ for some $j<i$. Hence there are between 0 and $n-1$ collisions. We want to compute the expected number of collisions.
(a) Assume that $n=3$ and $m \geq 3$. What is wrong with the following argument? When we hash y_{1}, then there cannot be a collision. When we hash y_{2}, then the probability of a collision with y_{1} is $\frac{1}{m}$. When we hash y_{3}, then the probability of a collision with y_{1} is $\frac{1}{m}$, and the probability of a collision with y_{2} is $\frac{1}{m}$. Hence the expected number of collisions is $\frac{3}{m}$.
(b) Still assuming $n=3$ and $m \geq 3$, what is the correct value for the expected number of collisions and why?

Problem 6. [Min cut] (30 points)

To determinize a randomized algorithm means to remove the random choices that the algorithm makes and replace them by deterministic (reproducible) decisions. Somebody determinizes the randomized min-cut algorithm from class so that in each contraction step, the algorithm always picks one of the edges with maximum weight (ties are handled in some unspecified manner).
(a) The input to a min-cut algorithm is a connected undirected graph with edge weights. Argue that if the input graph is a tree, then the determinized algorithm always finds a minimum cut.
(b) Give an input graph for which the determinized algorithm does not find a minimum cut (no matter how ties are handled).

