
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2010

CS 164: Test #2 (revised)

Name: Login:

Login of person to your left: and to your right:
You have one hour and twenty minutes to complete this test. Please put your login on each

sheet, as indicated, in case pages get separated. Answer all questions in the space provided
on the exam paper. Show all work (but be sure to indicate your answers clearly.) The exam is
worth a total of 20+ points (out of the total of 200), distributed as indicated on the individual
questions.

You may use any notes or books you please—anything unresponsive. We suggest that you
read all questions before trying to answer any of them and work first on those about which
you feel most confident.

You should have 7 problems on 8 pages.

1. /4

2. /3

3. /

4. /2

5. /4

6. /3

7. /4

TOT /20

1



Login: 2

1. [4 points] Give short answers to the questions below.

a. Java allows multiple inheritance only in the sense that a class may implement any
number of interfaces, which don’t contain method bodies or instance variables, but may
only extend one class. C++ allows classes to extend (in the Java sense) any number
of classes. In lecture, I showed that this complicates the implementation of instance
method calls in C++ relative to Java. Suppose that Java used a restriction on multiple
inheritance halfway between C++ and current Java: interfaces may have method bodies
(not just abstract methods), but not instance variables. For a definition such as

class A extends B implements I1, I2, ... { }

if we inherit a method body (that is, a non-abstract method) from both B and one or
more of the Ik, we use the one from B. If we inherit a method body from both Ij and
Ik where j < k, we use the one from Ij . How (if at all) would this change simplify the
implementation of multiple inheritance for Java relative to C++?

b. In standard Python, every object instance has a dictionary that maps names of at-
tributes (the ‘a’ in ‘x.a’) to their values (which may be methods as well as ordinary
object references). But Java, on the other hand, has fixed tables, generated at com-
pile time, containing method pointers and does not keep any kind of look-up structure
around for routine uses of instance methods and instance variables. Illustrate why
Python requires its use of dictionaries (that is, supply an example that shows why the
Java implementation strategy cannot work and briefly explain why).



Login: 3

2. [3 points] For a statically typed dialect of Python, give the type of the function iterate

defined below in ML notation (using ’a, ’b, etc. for type variables, A → B for function
types, A ⋆ B for a tuple whose elements have types A and B, etc.). For a function that takes
no argument and returns a value of type T , write the type as () → T . Show your reasoning

(which need not involve showing the application of the unification algorithm). Be sure to
define the type of iterate itself plus any non-free type variables you introduce in the process.

def iterate(f, x):

y = f(x)

def g():

return iterate(f, y)

return tuple(y, g)



Login: 4

3. [1 point] Which of the following terms least belongs?

anapest, antispast, dactyl, foot, iamb, paeon, pyrrhus, spondee, synecdoche

4. [2 points] Give the simplest NDFA you can that recognizes the same language as the
regular expression

(ab+c)*(a|b)*

Do not use more than 6 states (5 actually suffice). In particular, don’t use the result of
applying the general regular expression to NDFA construction.



Login: 5

5. [4 points]
Consider the following toy program:

def g(f, n, s):

if n <= 0:

return f(s)

else:

return g(f, n-1, s+n)

def h(p):

def scale(x):

return x * p # Stop here

print g(scale, 1, 0)

h(42)

Assuming that we restrict Python (as we will in
Project 3) so that functional values that survive beyond
the scope in which they are defined are invalid (so that
you may call the value of lambda x: x+y, or pass it as
a parameter, but may not return it from a function and
then call it), complete the diagram of the contents of
the stack at the point where execution reaches the spot
marked “Stop here.” In particular, show where dynamic
(DL) and static (SL) links point, and values and loca-
tions of actual parameters on the stack (don’t forget the
value of f). We’re assuming an ia32 architecture.

SL

DL

ra

SL

DL

ra

SL

DL

ra

SL

DL

ra

Top of stack

scale

g

g

h

main



Login: 6

6. [3 points] For each of the following Python programs (in our Project #2 subset), de-
termine the earliest phase in which processing could detect an error. If possible, indicate a
location in the program text. There may be more than one error in each program. Treat each
as a full program, without surrounding statements.

• Mark the location L if it will first fail in lexical analysis.

• Mark the location P if it will first fail in parsing.

• Mark the location S if it will first fail in static analysis.

• Mark the location R if it will first fail at run-time.

• Mark the program N if there is no error.

a. if x > 3:

y = x

x += 1

b. def f(x):

print x * y, x + y

f(12)

c. if x > 3:

y = x

x += 1

d. class A(object):

pass

def g(x):

print x * y, x + y

y = A()

g(12)

Continues on next page



Login: 7

e. class A(object):

x = 3

def f(self, y):

self.x = y

class B(A):

def g(self, y):

self.x = self.x + y

class C(B):

def h(self):

self.g(self.y)

x::C = C()

C.h()

f. def f(x):

global y

y = x

y::String = ""

f(12)



Login: 8

7. [4 points] For each of the type rules below (for a statically typed language), indicate
whether it allows illegal programs, disallows legal programs, or neither, assuming standard
interpretations of the program constructs. Predicates typeof, defn, and subtype are as de-
scribed in the lecture notes: typeof(V, T,E) means the static type of expression V is T in
environment E (a list of the form [def(V1, T1),. . .,def(Vn, Tn)] for variables Vi and types Ti);
defn(I, T,E) means that identifier I has static type T in environment E, and subtype(T, T ′)
means that T is a subtype of T ′ (possibly equal). If a rule is wrong, explain why by giving
an example of an excluded legal program or a permitted illegal program.

a. Assume that list(T) is intended to refer to a Python-style list (as in [1,2,3]), but
with statically typed elements, and that setitem(X,I,E1) is the AST for ‘X[I]=E1’.
Assume here that assignment statements have the types of their left operands.

typeof(setitem(X,I,E1), T, Env) :-

typeof(X, list(T), Env), typeof(E1, T1, Env), subtype(T1,T).

b. Here, suite([S1, . . . , Sn]) is intended to represent a suite of statements as in our
Python dialect, with the same semantics, and assign(X,T,E) stands for the assignment
X::T=E (again according to our rules).

typeof(suite([]),void,_).

typeof(suite([assign(X,T,E) | Rest]), void, Env) :-

typeof(E, T1, Env), typeof(suite(Rest), void, [def(X,T) | Env]),

subtype(T1, T).

rules for suites that start with other kinds of statements


