
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2010

CS 164: Final Examination (revised)

Name: Login:

You have three hours to complete this test. Please put your login on each sheet, as
indicated, in case pages get separated. Answer all questions in the space provided on the
exam paper. Show all work (but be sure to indicate your answers clearly.) The exam is worth
a total of 50+ points (out of the total of 200), distributed as indicated on the individual
questions.

You may use any notes or books you please, but not computers, cell phones, etc.—anything
inanimate and unresponsive. We suggest that you read all questions before trying to answer
any of them and work first on those about which you feel most confident.

You should have 9 problems on 15 pages.

1. /10

2. /4

3. /8

4. /6

5. /4

6. /

7. /4

8. /6

9. /8

TOT /50

Logins of person to your left: and to your right:

Login: 2

1. [10 points] For each of the following possible modifications to a fully functional system
for compiling and executing our Python dialect, tell which components of the compiler and
run-time system would have to be modified: lexical analyzer, parser and tree-generator,
static semantic analyzer, standard prelude, intermediate-code generator, machine-language
code generator, and run-time libraries. In each case, indicate a minimal set of components
from this list that would have to be changed, and indicate very briefly what change would be
needed. When you have a choice of two equal-sized sets of modules that might reasonably be
changed, choose the one that makes for the simplest change or whose modules appear earlier
in the list (e.g., prefer changing the lexical analyzer to the parser, if either change would be
about equally difficult).

a. Change the scoping rules so that the bodies of compound statements (if, while, for)
are declarative regions. For example, the following program is no longer legal:

def f(x, y):

if x < y:

a = x

else:

a = y

return a

because the return statement is outside of the if construct and therefore outside the
scope of a. However, an assignment inside a compound statement does not create a new
declaration if a variable with that name is declared in an enclosing scope.

b. Allow the “infinite” looping construct:

while:

S

which repeats the statements S until they exit with a break, return, etc.

Login: 3

c. Make identifiers partially case-insensitive, so that, e.g., “foo” and “Foo” are treated as
the same identifier, but make it an error to be inconsistent in the use of case for a given
variable, as in

foo = 13

def f(x):

Foo = 3 * x # OK (Foo hides the outer foo, and they are different

variables, which need not have the same capitalization).

print foo # ERROR (this refers to the local variable Foo, but

is capitalized differently).

c. As for item (b), make identifiers partially case-insensitive, but this time make it an
error to use two different capitalizations of the same identifier anywhere in the source
file, even if they refer to two different variables:

def f(x):

Foo = 3 * x

print Foo

def g(x):

foo = x / 3 # ERROR: the identifier ’foo’ is used elsewhere,

but capitalized.

Login: 4

e. Detect attempts to use the values of uninitialized variables for boxed types. By “use”
here, we mean “try to use as a function” (as in v(...)), “select a method from” (as in
v.f(...)), or “select an instance variable from” (as in v.a). You need not (but may)
consider assignments of an undefined value to a variable as uses. The detection should
not be conservative: detect exactly those cases where an uninitialized variable would
actually be used.

2. [4 points] Consider the following grammar:

p : s ⊣

s : ’[’ E ’]’ s ’/’ s

s : V ’=’ E

Suppose that we have a shift-reduce parser for this grammar. Write a regular expression that
describes the possible contents of the parsing stack just after a shift or a reduce. You do not
need to include the final shifting of ⊣.

Login: 5

Login: 6

3. [8 points] GCC allows you to print out assembly code (the ‘-S’ option) and then to read
it back in and assemble it. In fact, this is what it does internally, even when you don’t ask
to retain the actual code. I’d like to do the same thing with our IL code (at the moment, we
can only dump it with ‘-dIL’ and cannot read it back in). In this problem, we ask you to do
part of the job. Write a Bison parser for the following types of IL statements, separated by
newlines:

MEM := REGIMM

REG := MEM

REG := REGIMM OP REGIMM # OP is + or *

jump LABEL

if REGIMM CMP REGIMM jump LABEL # CMP is > or ==

LABEL:

where

• LABEL is LN

• MEM is *M(REG);

• REG is %rN ;

• REGIMM is $M or REG.

Where M indicates any integer literal and N any positive integer literal. Don’t bother with
other instructions or types of operands (in particular, there is no ENTRY or EXIT, so we
translate only the body of a single function). The actions in this Bison grammar should call
the appropriate functions from the project: vm.IMM(M) for integer literals, vm.MEM(R, M)

for memory accesses, vm.allocateRegister(), vm.newLabel(), and vm.defineInstLabel()

for statement labels, and vm.emitInst(...). You should not need any other methods from
vm.h for this subset, but feel free to use standard C++ libraries as you see fit (or make
them up within reason, if you don’t remember the details). Also feel free to introduce global
variables as needed. When you translate a register (such as %r7), or local statement label
(such as L7), it doesn’t matter what register number or label number gets used in the IL,
as long as it is the same for each appearance of the same register or label, and different for
different registers or labels.

Fill in the grammar rules and actions on the next page. Indicate what tokens you assume
from the lexer (which you don’t have to write) and what semantic values you assume each
token or non-terminal has.

Login: 7

Put %token and %type definitions here, as needed

%%

program :

/* EMPTY */

| program inst NEWLINE

;

Fill in the rest

Login: 8

4. [6 points] We’d like to determine what statements in a program might blow up from
dereferencing a null pointer. We’ll assume a vastly simplified, statically typed programming
language. The only expressions are new (indicating a storage allocation of some appropriate
type), v (for v a pointer variable), v.a (for v a pointer variable and a the name of a field),
and null. The only statements are

Assignments: v = E or v.a = E, where E is an expression;

Conditionals: if E1 == E2 then S1 else S2 fi, where S1 and S2 are lists of (zero or
more) statements and E1 and E2 are expressions;

Loops: while E1 != null do S1 od.

Whenever the program evaluates an expression v.m and v is null, the program “blows up”
and control never reaches the next statement.

At any point in the program, we’d like to know (conservatively) what variables might be
null. For example, your analysis should be able to annotate the following program as shown
in its comments:

1. x, y, L, q, z might be null

while L != null do

2. x, y, q, z might be null

x = new

3. y, q, z might be null

y.a = x

4. q, z might be null

z = x

5. q might be null

L = L.n

6. L, q might be null

if L == null then

7. L, q might be null

q = new

8. L might be null

else

9. q might be null

q = L

10. no variable can be null

fi

11. L might be null

od

12. x, y, L, q, z might be null

We’ll assume that we never know anything about the contents of fields (such as y.a); that is,
your analysis need not track their contents.

Questions begin on next page.

Login: 9

a. [1 point] Why does comment 4 no longer include y as possibly null, even though the
pointer y itself is not changed by the preceding assignment to y.a?

b. [4 points] Describe an appropriate analysis along the lines of the flow analyses described
in lecture. One slight complication: in our lecture examples, a statement s always had
one output (e.g., Cout(X, s) for constant propagation). On this problem, for nodes
denoting conditional branches, which have more than one output, you’ll want to spec-
ify outputs for the true branch and the false branch. For example, Nout/t(· · ·) and

Nout/f(· · ·).

c. [1 point] Give an example in which your analysis gives an overly conservative bound on
a variable (that is, says that a variable might be null when it can’t possibly be null).

Login: 10

5. [4 points] Ingrid Hackersdottir noticed that she could almost get the effect of dynamic
variable binding in Python by converting definitions such as

def f(x):

...

h()

...

def h()

print x

into def f(x0):

global x

x = x0

...

h()

...

def h()

global x

print x
(where x0 is some variable name that is not used elsewhere in f.) This does cause h, when
called, to see and print the right value for x (namely, the one established by the call to f).
Unfortunately, this transformation does not quite implement dynamic scoping; it is missing
a vital piece.

a. Give an example where this transformation does not work.

b. Describe how to fix the problem—that is, how to complete the implementation of dy-
namic scoping within Python. Give sufficient detail for Ingrid to implement the proce-
dure. For simplicity, assume that all functions have a single exit point (either a single
return statement or the end of the function) and that there are no try blocks.

Login: 11

6. [1 point] Who, responding to the Earl of Sandwich’s taunt, “Egad sir, I do not know
whether you will die on the gallows or of the pox,” said “That will depend, my Lord, on
whether I embrace your principles or your mistress.”?

7. [4 points] In a statically typed language without subtypes (that is, without extends and
implements in Java), consider the following looping construct:

for V = E0 while C0 incr E1 do

S

od

meaning that we set V to the value of E0, and then execute S as long as C0 is true, evaluating
E1 and assigning it to V after each iteration of S (and before re-testing C0). Unlike C
or Python, all expressions used for tests have type bool. The type of S is irrelevant, as
long as it has a proper type. The type of the for as a whole is void. This statement
defines variable V , whose scope then includes C0, E1, and S. Provide a typing rule for this
construct, using the Prolog predicates typeof and defn as described in the lecture notes:
typeof(V, T,E) means the static type of expression V is T in environment E (a list of the
form [def(V1, T1),. . .,def(Vn, Tn)] for variables Vi and types Ti); and defn(I, T,E) means
that identifier I has static type T in environment E. Assume that there are already other
rules describing the other constructs in the language. The AST of these loops in Prolog syntax
has the form

for(V ′, E′

0
, C ′

0
, E′

1
, S′)

where the primed quantities are the ASTs for V , E0, etc.

Login: 12

8. [6 points] Consider the following class definitions:

abstract class A {

void f(T t);

}

class B extends A {

void f(T t) { t.g(this); } // #1

}

class C extends A {

A x;

C(A a) { x = a; } // #2

void f(T t) { // #3

t.g(this);

x.f(t);

}

}

abstract class T {

void g(B b);

void g(C c);

}

class U extends T {

void g(B b) { println("Hello!"); } // #4

void g(C c) { println("Bonjour!"); } // #5

}

On the next page, draw a diagram of the objects pointed to by the variables in the following
snippet, showing their instance variables and other data structures needed to make the code
work. Label function code pointers with the numbers given in the comments above.

A a = new C(new B());

T t = new U();

a.f(t);

Login: 13

Put diagram here

Login: 14

9. [8 points] For each of the following questions, provide a short, succinct answer.

a. Demonstrate that a grammar can be ambiguous, even though there are strings with
exactly one parse according to the grammar.

b. We chose (as do most implementations of similar OOP features) to put virtual table
pointers in objects. But it is also possible to keep virtual table pointers in variables
instead. That is, objects could contain only instance variables and each variable (local
variable, instance variable, parameter, or global variable) could then contain a pointer
to an object and another pointer to the virtual table pointer for that object. What
advantages or disadvantages in performance can you see for such a scheme?

Login: 15

c. Our implementation of Python makes no provisions for garbage collection. Suppose that
we were interested in changing that. Assuming we want to do “real” garbage collection
(rather than a conservative heuristic, such as mentioned briefly in lecture), why is the
current vm.h interface (used for IL code generation) insufficient? That is, why couldn’t
we just change the implementations of the IL routines, interpreter, low-code generation
routines (in assemble.cc), and runtime to add garbage collection?

d. In full Python, integers have no set limits on their values; it depends on the size of virtual
memory. How does this language feature affect even the performance of programs that
never compute values outside the range [−231..231 − 1]?

