
CS 164 Handout 11Midterm Examination� Please read all instructions (including these) carefully.� Please print your name at the bottom of each page on the exam.� There are seven questions on the exam, each worth between 10 and 20 points. You have 1 hourand 20 minutes to work on the exam, so you should plan to spend approximately 12 minutes oneach question.� The exam is closed book, but you may refer to your two sheets of prepared notes.� Please write your answers in the space provided on the exam, and clearly mark your solutions.You may use the backs of the exam pages as scratch paper. Please do not use any additionalscratch paper.� Solutions will be graded on correctness and clarity. There are no \tricky" problems on theexam|each problem has a relatively simple and straightforward solution. You may get as fewas 0 points for a question if your solution is far more complicated than necessary.NAME: Sample SolutionsSID or SS#: Problem Max points Points1 152 153 204 105 206 107 10TOTAL 100
Fall 94 page 1 of 8

CS 164 Handout 111. Regular Expressions (15 points)Consider a language where real constants are de�ned as follows: A real constant contains adecimal point or E notation, or both. For instance, 0:01, 2:71821828, ~1:2E12, and 7E~5 arereal constants. The symbol \~" denotes unary minus and may appear before the number or onthe exponent. There is no unary \+" operation. There must be at least one digit to left of thedecimal point, but there might be no digits to the right of the decimal point. The exponentfollowing the \E" is a (possibly negative) integer.Write a regular expression for such real constants. Use the standard regular expression notationdescribed by the following grammar:R! � j char j R+R j R � j RR j (R)You may de�ne names for regular expressions you want to use in more than one place (e.g.,foo = R). digit = 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9posint = digit digit�int = (�+ ~) posintexp = E intfrac = : digit�real = (int frac (exp+ �)) + (int (frac+ �) exp)

Fall 94 page 2 of 8

CS 164 Handout 112. Finite Automata (15 points)Consider a DFA with a start state s0 and a transition function trans. For a state s and inputcharacter c, trans(s; c) = s0 if there is a transition from state s to state s0 on character c. Ifthere is no transition from s on c then trans(s; c) = none. The following algorithm simulatesthe behavior of such a DFA, accepting if the input string is accepted by the DFA and rejectingotherwise.state s0while there's input left do:char next input characterif trans(state,char) = none then stop and rejectstate trans(state,char)(end of loop)accept if state is a �nal state, otherwise rejectNow consider an NFA with a start state s0 and a transition function trans. In this case, for astate s and input character c (we now allow c = �), trans(s; c) is the set of states s0 for whichthere is a transition from s to s0 on c. In the style of the algorithm above, give a (deterministic)algorithm that simulates the behavior of such an NFA. You may use the �-closure operationdescribed in class and in the text.Simulate subset construction. Use state-set instead of state.state-set �-closure(s0)while there's still input left do:char next input characterif �-closure(Ss2state-set trans(s; char)) = ; then stop and rejectstate-set �-closure(Ss2state-set trans(s; char))(end of loop)accept if there's a final state in state-set, otherwise reject.
Fall 94 page 3 of 8

CS 164 Handout 113. Grammars (20 points)Consider the following grammar. The nonterminals are E, T, and L. The terminals are +,id,(,),and ;. The start symbol is E. E ! E + T j TT ! id j id() j id(L)L ! E; L j EGive an LL(1) grammar that generates the same language as this grammar. As part of yourwork please show that your grammar is LL(1).(a) Eliminate left recursion: E ! TE0E0 ! +TE0 j �T ! id j id() j id(L)L ! E; L j E(b) Left factor: E ! TE0E0 ! +TE0 j �T ! id T0T0 ! � j (T00T00 !) j L)L ! EL0L0 ! ; L j �(c) Check that it's LL(1). For this part you just needed to give enoughinformation to show that there would be no conflicts in the parsing table.The following is sufficient:E0 ! +TE0 j � First(+TE0) = f+gFollow(E0) = f$;); ; gT0 ! � j (T00 First((T00) = f(gFollow(T0) = f+; $;); ; gT00 !) j L) First()) = f)gFirst(L)) = fidgL0 ! ; L j � First(; L) = f; gFollow(L0) = f)gFall 94 page 4 of 8

CS 164 Handout 114. Parsing (10 points)In both parts of this question, we are looking for clarity and brevity as well as the right idea.Suppose you are writing a parser for a programming language that includes the following syntaxfor looping constructs: Loop ! do stmt while exprj do stmt until exprj do stmt forever(a) (5 points) A predictive parser (i.e., a top-down parser with no backtracking) can't use thisgrammar. Give a brief (a couple of sentences) explanation of this fact.When trying to expand a production for non-terminal ``loop'', the parsercannot decide which of the three productions to expand using only the nextfew input tokens.
(b) (5 points) Give a brief explanation of why a bottom-up parser does not have di�culty withthis grammar.When a bottom-up parser must decide which of the three productions tochoose (reduce), the ``while'', ``until'', or ``forever'' has already beenread and shifted onto the stack.

Fall 94 page 5 of 8

CS 164 Handout 115. Parsing (20 points)Consider the following grammar. The nonterminals are S0 and S. The terminals are op and x.The start symbol is S0. S0 ! SS ! S op S j x(a) (15 points) Draw the DFA built from sets of LR(0) items for this grammar. Show thecontents of each state. (Note: Don't augment the grammar with a new start symbol.)-----------------| S' -> . S || S -> . S op S || S -> . x |-----------------S | | x--------------- ------------V V----------------- ------------| S' -> S . | ** | S -> x . || S -> S . op S | ----------------------------- ^| op x ||--------------- ---------------V |-----------------| S -> S op . S || S -> . S op S || S -> . x |-----------------^ |op | | S| V-----------------| S -> S op S . | *| S -> S . op S |-----------------(b) (3 points) Is this grammar SLR(1)? Brie
y explain why or why not.No. The grammar is ambiguous. For example, there are two parses of thestring ``x op x op x''.An alternative justification is that there is a shift/reduce conflict instate *. Note that there is no shift/reduce conflict in the state **.(c) (2 points) Is this grammar LR(1)? Briefly explain why or why not.No. The grammar is ambiguous.Fall 94 page 6 of 8

CS 164 Handout 116. Bison and Abstract Syntax Trees (10 points)Consider the following constructors for a tree language:Expression app(Expression, Expression);Expression lambda(Expression, Expression);Expression id();Now consider the following Bison grammar:%token ID LAMBDA%type <Expression> Expr%%Expr : ID{ $$ = id(); }| '(' LAMBDA ID '.' Expr ')'{ $$ = lambda(id(), $5); }| '(' Expr Expr ')'{ $$ = app($2, $3); }Draw the abstract syntax tree that would be produced when parsing the sequence of tokensbelow. Label all the nodes of your AST with the appropriate constructor.((LAMBDA ID . (ID ID)) (LAMBDA ID . ID))app----------------------lambda lambda-------------- -------------id app id id---------id id
Fall 94 page 7 of 8

CS 164 Handout 117. Type Checking (10 points)Suppose we want to design a type checker for Scheme programs. In Scheme, functions can bepassed as arguments to and returned as results from functions. Recall the type checking rule forfunction application given in class:A ` f : t1 ! t2 A ` x : t1A ` f(x) : t2Self-application occurs when a function is called with itself as a parameter. This is, if f is afunction taking a function as a parameter, the f(f) is an instance of self-application. Brie
yexplain why type checking of self-application must always fail using the type checking rule above.From the rule, in a self-application f(f) we know that:f : t1 -> t2f : t1But t1 is a proper subexpression of t1 -> t2, so t1 <> t1 -> t2. Sincef cannot have two disinct distinct types, type checking fails for selfapplication.An alternative (but equivalent) answer is:If f : t1 -> t2 and f : t1 then t1 = t1 -> t2 since f has one type.But thent1 = t1 -> t2 = (t1 -> t2) -> t2 = ((t1 -> t2) -> t2) -> t2 =... -> t2 -> t2 -> t2which is infinite. Since types are finite size, type checking must fail forself-application.
Fall 94 page 8 of 8

