
CS 164 Handout 16Final Examination� Please read all instructions (including these) carefully.� Please print your name at the bottom of each page on the exam.� There are nine questions on the exam, some in multiple parts. You have 3 hours to work on theexam.� The exam is closed book, but you may refer to your four sheets of prepared notes.� Please write your answers in the space provided on the exam, and clearly mark your solutions.You may use the backs of the exam pages as scratch paper. Please do not use any additionalscratch paper.� Solutions will be graded on correctness and clarity. There are no \tricky" problems on theexam|each problem has a relatively simple and straightforward solution. You may get as fewas 0 points for a question if your solution is far more complicated than necessary.NAME: Sam P. L. SolutionSID or SS#: Problem Max points Points1 102 153 504 205 206 157 358 159 20TOTAL 200
Fall 94 page 1 of 15



CS 164 Handout 161. Scope (10 points)Give a simple program that produces di�erent results if executed using lexical scoping than ifexecuted using dynamic scoping. Show what your program produces in both cases. Use anyreasonable and clear programming notation.main()var x;proc p1var x;x := 1;p2();end;proc p2print(x);end;x := 0;p1();end;This program prints 0 with lexical scope and 1 with dynamic scope.
Fall 94 page 2 of 15



CS 164 Handout 162. Parsing (15 points)For each of the following questions, we are looking for clarity and brevity as well as the rightidea.(a) (5 points) Give a de�nition of the term derivation. What is a left-most derivation?Begin with the start symbol S. At each step, choose a non-terminal X andreplace it by Y1...Yn, where X -> Y1...Yn is a production of the grammar.Any sequence of such replacements is a derivation.A left-most derivation always chooses the leftmost non-terminal forreplacement.You could also say that a derivation ends in a string of terminals, butthis is not required for full credit.(b) (5 points) Give one advantage of SLR(1) grammars over LR(1) grammars; give one advan-tage of LR(1) grammars over SLR(1) grammars.An SLR(1) parser generator produces tables of practical size, whereas anLR(1) parser generator often produces tables too large to be useful forrealistic languages. On the other hand, the class of LR(1) grammars islarger than the class of SLR(1) grammars.(c) (5 points) Consider a bottom-up parser for a grammar with no �-productions and no singleproductions (i.e., productions with a single symbol on the right-hand side). For an inputstring with n tokens, what is the maximum number of reduce moves the parser can make?Why?All productions in the grammar have at least two symbols on the right-handside and one symbol on the left-hand side. Thus, every reduction reducesthe number of symbols by at least 1. Therefore, there can be at most n � 1reductions.
Fall 94 page 3 of 15



CS 164 Handout 163. (50 points)A few years from now, fanatical graduates of CS164 have succeeded in convincing the world thatCool should replace C++ as the object-oriented programming language of choice. Naturally, aCool standards committee is formed. The committee cannot leave a superior design alone anddecides that Cool needs some changes.(a) Regular Expressions (10 points)One of the committee members has an obsession with comments. She thinks it is ugly thatone cannot write \�)" inside a \(�" comment; after all, what if that is what you want towrite?The proposal is to replace all Cool comments with the following mechanism: A commentbegins with one of the special characters $,!, or @ and ends with the same special character.Between the �rst and last character, the comment may contain any character except the �rst(and last) character. Comments may not be nested. For example, !cool@cs.berkeley.edu!and @Cool code rules!@ are valid comments, but !This is great!! and $Help! are not validcomments.Write a regular expression for comments. Use any reasonable and clear notation.The notation [^c] means "all characters except c."(![^!]*!) | (@[^@]*@) | ($[^$]*$)

Fall 94 page 4 of 15



CS 164 Handout 16Someone else on the committee feels that Cool is not expressive enough. He thinks that Coolsimply must have backtracking. The proposed backtracking mechanism has two commands:track (e1; e2; : : : ; en)backInformally, a track command is evaluated as follows. First, e1 is evaluated. If e1 terminatesnormally, then the result of the expression is the result of evaluating e1. If e1 fails (seebelow), then e2 is evaluated. If e2 terminates normally, the result is the value of e2; if e2fails, then e3 is evaluated. This process continues until one of the expressions does not fail.A back command causes a tracked computation to fail. When a back command is exe-cuted, control is transferred to the nearest lexically enclosing track command and the nextexpression is evaluated. The following example evaluates to \1":track (begin 3; back; end,back,1)(b) Parsing (10 points)Consider the following very simpli�ed grammar for Cool expressions with track and back:E ! if E then E else E �j while E loop E poolj track ( ELISTj backELIST ! E )j E; ELISTBoldface denotes a keyword, capitalized words are non-terminals, and lowercase words areterminals. A member of the committee observes that the semantics of track(e1; : : : ; en) isunde�ned if all of the expressions fail. A simple way to guarantee that at least one expres-sion succeeds is to forbid back statements inside the last expression en, except for backstatements in (all but the last expression of) nested track statements. Rewrite the gram-mar so that e1; : : : ; en�1 may contain back statements, but en cannot, except for nestedtrack statements, where the same rule applies recursively. Your grammar should allow anyother proper nesting of expressions. Don't use ellipses (: : : ) in your grammar.E ! if E then E else E �j while E loop E poolj track ( ELISTj backELIST ! F )j E; ELISTF ! if F then F else F �j while F loop F poolj track ( ELISTFall 94 page 5 of 15



CS 164 Handout 16(c) Type Checking (10 points)Write a sound type checking rule for a track expression. Your rule should be reasonablyprecise|it isn't OK simply to say it has type Object. (Note: Don't worry about the typeof back; you don't need it to answer this question.)A typechecking rule is easy to write using the least-upper bound operationon Cool types:A |- ei : Ti 1 <= i <= n--------------------------------------A |- track(e1,...,en) : lub(T1,...,Tn)Another correct, but less general, answer is:A |- ei : T 1 <= i <= n---------------------------A |- track(e1,...,en) : T(d) Code Generation and Semantic Actions (20 points)Write semantic actions to generate code for the original grammar (not the one you wrote)in part (b). For this problem, we are interested only that you generate the correct controlstructure.Your semantic actions should use attributes. Assign to attribute E:code the code for ex-pression E. You may use any other attributes (inherited or synthesized) you wish. Showthe attribute de�nitions for each production.Use only the following pseudo-assembly instructions in your solution:JUMP L unconditional jump to label LJUMPF L jump to label L if the previous instruction evaluates to falseLABEL L gives the label L to the next executable instructionYou may use a function newlabel() that returns a unique label. The code attribute is astring; s1jjs2 denotes concatenation of two strings s1 and s2. To help you get started, apartial solution for while loops is given below (the solution is partial because you may needto add attributes):production: E1 ! while E2 loop E3 poolwhile.top = newlabel()while.exit = newlabel()E1:code = LABEL while:top jj E2:code jj JUMPF while:exit jjE3:code jj JUMP while:top jj LABEL while:exitIf all expressions in a track command fail, the code should jump to the label ERROR.Don't worry about adjusting the stack or modifying registers. Do not change the grammar.Fall 94 page 6 of 15



CS 164 Handout 16(This page intentionally left almost blank.)E1 -> if E2 then E3 else E4if.flabel = newlabel()if.exit = newlabel()E1.code = E2.code || JUMPF if.flabel || E3.code || JUMP if.exit ||LABEL if.flabel || E4.code || LABEL if.exitE2.label = E3.label = E4.label = E1.labelE1 -> while E2 loop E3 poolrules given above, plus:E2.label = E3.label = E1.labelE -> track ( ELISTELIST.exit = newlabel()E.code = ELIST.code || LABEL ELIST.exitE -> backE.code = JUMP E.labelELIST -> E )E.label = ERRORELIST.code = E.codeELIST1 -> E, ELIST2ELIST2.exit = ELIST1.exitE.label = newlabel()ELIST1.code = E.code || JUMP ELIST1.exit || LABEL E.label || ELIST2.code
Fall 94 page 7 of 15



CS 164 Handout 164. Activation Records (20 points)Consider a program with the following lexical structure. The program is written in a lexicallyscoped language with nested procedures (like Pascal):proc P()proc Q(proc T())proc R()proc S()P;R, and S are parameterless procedures; Q takes a parameterless procedure T as a parameter.Suppose that at run-time the following sequence of calls is made:P is called from some lexically-enclosing main programP calls RR calls SS calls PP calls RR calls Q with S as a parameterQ calls TT calls SDraw the stack of activation records present after this sequence of calls. You don't need to showthe entire contents of the activation record|for each indicate only the name of the procedurebeing activated, the control (dynamic) link for that activation record, and the access (static)link for that activation record.
Fall 94 page 8 of 15



CS 164 Handout 16(This page intentionally left almost blank.)
Main

S

P

R

Q

T

S

Dynamic

Links

Access 

Links

Stack grows upwards.

P

R

Fall 94 page 9 of 15



CS 164 Handout 165. Cool and Type Checking (20 points)Consider the following Cool program. In the blanks provided, you should �ll in both missingtype declarations and the types inferred by the compiler for each expression. Fill in the mostspeci�c (most accurate) type possible. The �nal program should type check correctly using thedeclarations you �ll in.Each blank is the type of the expression immediately to the left; parentheses have been addedwhere necessary to make clear which expression is meant.Class A isa : Int ;init(x : Int ) : SELF TYPE isbegin (a Int  x Int ) Int ; self SELF TYPE end SELF TYPEend;end;Class B inherits A isb : Int  1 Int ;getb() : Int is b Int end;end;Class C inherits A isc : Int  2 Int ;getc() : Int is c Int end;end;class Main inherits IO ismain() : A islet y : Bool incase (if (y Bool  ((in int() Int = 0 Int ) Bool )) Bool then(new B) Belse (new C) C ) Aof x : B ) (x B .init((x B .getb()) Int )) B ;y : C ) (y C .init((y C .getc()) Int )) C ;esac Aend Aendend;
Fall 94 page 10 of 15



CS 164 Handout 166. (Garbage Collection) (15 points)Garbage collect the following heap using Mark & Sweep garbage collection. Clearly indicatewhich cells will be marked, and construct the free list resulting from the collection.
A

B

C

D

E

F

G

H

I

Root

Freelist nil

Marked: C,E,F,G,H,IFree-list -> A -> B -> DFall 94 page 11 of 15



CS 164 Handout 167. (Dataow Analysis and Register Allocation) (35 points)Consider the following fragment of intermediate code:L0:x <- y + xw <- 2 * xif s = u goto L1x <- w + uu <- u - 1goto L2L1:s <- w + 1L2:y <- s + xif y > 1000 goto L0L3:(a) (5 points) Draw a control-ow graph for this piece of code. Place each basic block in asingle node; be sure to include the conditionals in the basic blocks.(b) (15 points) Annotate your control-ow graph with the set of variables live before andafter every statement (not just before and after every block!), assuming that s andu are live at label L3. Make sure it is clear where your annotations are placed.
x <- y + x

if s = u goto L1
w <- 2 * x

y <- s + x
if y > 1000 goto L0

x <- w + u
u <- u - 1

s <- w + 1

L3
{s,u} {s,u,x,y}

{s,u,x,y}

{s,u,x} {s,u,x}

{s,u,x}

{s,u,x,y}

{s,u,x}

{u,w,x} {s,u,w}

{s,u,w,x}

{s,u,w,x}

Fall 94 page 12 of 15



CS 164 Handout 16(c) (15 points) Draw the register interference graph for the intermediate code given on theprevious page.
Y U

W

S

X

Fall 94 page 13 of 15



CS 164 Handout 168. Type Checking (15 points)Consider the following C-like expression language:e ! e1[e2]j &ej �ej iIn this grammar, i represents an integer. Now consider the following type language and typerules: T ! intj pointer(T)j array(T)A ` i : int [INT ]A ` e1 : array(T) A ` e2 : intA ` e1[e2] : T [ARRAY ]A ` e : TA ` &e : pointer(T) [POINTER]A ` e : pointer(T)A ` �e : T [DEREF ]Now consider the expression &((�B)[1]). (The parentheses are included only to clarify precedenceand are not part of the expression.) Given the type assumptions A = fB : pointer(array(int))g,show the type derivation for the expression. Indicate the rule you use at each step.A |- B : pointer(array(int))----------------------------- [DEREF] ------------ [INT]A |- *B : array(int) A |- 1 : int-------------------------------------------- [ARRAY]A |- (*B)[1] : int------------------------------------------------------ [POINTER]{ B:pointer(array(int)) } |- &((*B)[1]) : pointer(int)
Fall 94 page 14 of 15



CS 164 Handout 169. Optimization (20 points)Consider the following fragment of intermediate code:y := wz := 4v := y * yu := z + 2r := w ** 2 (* exponentiation *)t := r + vs := u * tAssume that only the variable s is live on exit from this fragment. Show the result of applyingas much constant propagation, algebraic simpli�cation, common sub-expression elimination,constant folding, and dead code elimination as possible to this code. Show the optimizationsyou perform and the order in which they are applied as part of your answer. You need not showthe entire code sequence after every optimization, but you should explain clearly what changesat each step.w ** 2 => w * w algebraic simplification/strength reductionreplace y by w copy propagationreplace r := w * w by r := v common subexpression eliminationreplace r by v copy propagationreplace z by 4 constant propagationreplace 4+2 by 6 constant foldingreplace u by 6 constant propagationremove assignments to y,z,u,r dead code eliminationResult:v := w * wt := v + vs := 6 * tIf you wanted to get really fancy---not required for full credit---youcould continue:t := 2 * v algebraic "optimization" (see below)replace s := 6 * t by 12 * v a kind of constant propagationeliminate assignment to t dead codeResult:v := w * ws := 12 * vMost compilers will not find this last sequence of optimizations, becausethe step v + v => 2 * v is not an improvement on most machines (inother words, * is usually slower than +).Fall 94 page 15 of 15


