Login: cs164-

CS164 Second Midterm Exam

Fall 2014
November 24", 2014

e Please read all instructions (including these) carefully.

e This is a closed-book exam. You are allowed a one-page, one-sided
handwritten cheat sheet.

e Write your name and login on this first sheet, and your login at the top of each
sheet.

e No electronic devices are allowed, including cell phones used merely as
watches.

e Silence your cell phones and place them in your bag.

e Solutions will be graded on correctness and clarity. Each problem has a
relatively simple and straightforward solution. Partial solutions will be graded for
partial credit.

e There are todo pages in this exam and 4 questions, each with multiple parts. If
you get stuck on a question move on and come back to it later.

e You have 1 hour and 20 minutes to work on the exam.

e Please write your answers in the space provided on the exam, and clearly mark
your solutions. You may use the backs of the exam pages as scratch paper. Do
not use any additional scratch paper.

LOGIN:

NAME:

Problem Max points Points
1
2
3
4
Sub Total 100

Login: cs164-

Question 1: Adding Constructs [15 points]

This question will test your understanding of how to add new language constructs.

Imagine you want to add a crazy new construct to the cs164 language. This construct will be
called untilNull, and it will evaluate each expression in a sequence of 3 expressions until it
reaches an expression that evaluates to null. It will not execute any expressions after that
null-valued expression. If no expression in the list evaluates to null, this construct will
evaluate all expressions. For the purposes of this question, we do not care what untilNull
itself evaluates to.

Informal Syntax Example 1 Output 1 | Example 2 Output 2
untilNull(E, E, E) def times(x, y){ 1 def x = 0; 1
def a = x*y 2 def plus(num){
print a X = X+num
if (a == 2){null} null
else{a} }
} untilNull(
untilNull(plus(1),
times(1,1), plus(2),
times(1,2), plus(3)
times(1,3))
) print x

Part A [5 points] Can the untilNull construct be implemented by extending the core cs164
language --- that is, by adding an untilNull AST node with el, e2, and e3 attributes and
adding a new untilNull case to your interpreter’s evalExpression function? If yes, write
code for the new untilNull case. If no, write a one to two sentence description of why this

design strategy is impossible. Write in only one box!

Yes function evalExpression(node, env) {
switch (node.type) {
case 'untilNull':
if (evalExpression(node.el, env) !== null){
if (evalExpression(node.e2, env) !== null){
evalExpression(node.e3, env);
}
}

return null; //we don’t care about the return val

No

Login: cs164-

Part B [5 points] Can the untilNull construct be implemented by desugaring the

untilNull construct into constructs already present in the cs164 language --- that is, by

adding an untilNull AST node with el, e2, and e3 attributes and adding a new desugaring

rule? If yes, write the desugaring rule. If no, write a one to two sentence description of why

this design strategy is impossible. Write in only one box!

Yes | var DESUGAR_AST RAW = {
"untilNull': 'lambda(){ \
if (%el != null) { \
if (%e2 !'= null) { \
%e3 \
A
3O
}
No

Part C [5 points] Can the untilNull construct be implemented as a library function --- that

is, by letting the parser produce a call node, and adding a function untilNull with

arguments el, e2, and e3 defined in library.164? If yes, write code for the library function. If

no, write a one to two sentence description of why this design strategy is impossible. Write in

only one box!

Yes

def untilNull(el, e2, e3){

}

No

No. If we implement untilNull as a function, all three expressions will be
evaluated every time the construct is used. Our spec requires that only the

Login: cs164-

expressions up until and including the first null-valued expression be evaluated.

Login: cs164-

Question 2: Regular Expressions and Automata [30 points]
This question will test your understanding of regular expressions and automata.

Part A [2 points] Write a regular expression that accepts the same strings as the
nondeterministic finite automaton (NFA) pictured below. Your regular expression may use
concatenation, alternation (|), Kleene stars (*), and parentheses.

NFA

Regular Expression

(cs164)*

Part B [4 points] Draw an NFA that accepts the same strings as the following regular

expression.

Regular Expression

NFA

(a|bc)*d

Login: cs164-

Part C [6 points] Draw a state transition table (as seen in discussion section) for the
following NFA, then a state transition table for a deterministic finite automaton (DFA) that
accepts the same strings, then a DFA that accepts the same strings.

NFA NFA state transition DFA state transition table
table
a b a b

! 23} Gl 23 D

2 0 {3}

3 2 ol | -2 3
2 D 3
3 2 D
D D D

DFA

Part D [6 points] The following rule for converting the regular expression A* into an
automaton is not correct. The oval labeled “A” represents an NFA equivalent to the regular
expression element A. Provide an example regular expression for which this rule will yield an
NFA that is not equivalent to the regular expression; also provide a string that is accepted by
either the regular expression or the NFA, but not the other.

Login: cs164-

Regular expression for which this rule fails:

(a(b)’)*

String accepted by either the above regular expression or

. © its rule-generated automaton, but not both:
b

Part E [6 points] A question mark in a regular expression indicates that the regular
expression accepts exactly 0 or 1 instances of the element that precedes the question mark.
For instance, the regular expression yay? accepts the strings “ya” and “yay”. If our only other
translation rules are the rules seen in class, is the following rule for converting A? to an
automaton correct for all regular expressions? If yes, justify your answer. If no, provide an
example regular expression on which it fails; also provide a string that is accepted by either
the regular expression or the automaton, but not the other.

-9

Yes, this rule works. No, this rule doesn’t work.

Justification: Regular expression for which this rule fails:
As long as we’re using correct rules for all other
constructs in regular expressions, this is ok,

because there are never ‘backward’ edges leaving String accepted by either the above regular

the final state. If we’re using incorrect rules, like expression or its generated automaton, but not
the Kleene star rule above, then this rule can fail, both:

basically in the same way that the above Kleene
star rule fails.

Part F [6 points] Propose a rule for converting regular expressions with Kleene plus (+) into
automata. Your rule should be presented as a drawing of the automaton to which A+ should
be converted, where A is any regular expression element. Label an oval with “A” to indicate
that it is an NFA equivalent to the regular expression element A. A Kleene plus is like a
Kleene star except that it requires at least one repetition of the preceding regular expression
element.

Login: cs164-

Login: cs164-

Question 3: Grammars, SDT and Parsing [35 points]

This question will test your understanding of grammars, syntax directed translation and
parsing. We provide a small grammar to express automata below. You will be fixing and
adding onto this grammar.

%ignore /[\t\v\f\r\n]+/
%%
S ->S Sep S

| E

I

E -> Node Transition Node

J

Transition -> “->’ Input

J

Node -> Id

J

Sep -> ¢’

)

Input -> “(’ Character ¢)’
| _

5
Character -> /[a-zA-Z_0-9]/

Id -> /[a-zA-Z][a-zA-Z 0©-9]+/ ;

Login: cs164-

Part A [10 points] The grammar allows simple automata to be easily specified. We provide
an example of a string in the language, and the corresponding automata below.

Input: n1 ->(h) n2 O__O
h

Draw the completed edges created by the Earley algorithm using the above grammar on the
input “n1 ->(h) n2”. We provide the final completed edge (S -> E.) as an example of the
labelling we expect.

> 5 (/:\ h 4
N

E --> Node Transition Node.

Part B [4 points] The grammar above is ambiguous. Modify the grammar to remove
ambiguity. You only need to write production(s) that are new or modified.

S ->S Sep E
| E

J

Part C [2 points] What is the worst-case running time of parsing an input string using the
original (ambiguous) grammar?

O(n"3)

10

Login: cs164-

Part D [3 points] Write an input which exhibits the worst case running time for the original
grammar.

nl ->(h) n2; n2 ->(i) n3; n3 ->(j) n4; ... ; nle® ->(a) nlel

Part E [3 points] Now we want to modify the grammar to allow for paths. A path allows
multiple adjacent transitions to be specified together. For example, the two following strings
specify the same automaton.

nl ->(h) n2; n2 ->(i) n3 nl ->(h) n2 ->(i) n3

Again, you only need to write production(s) that are new or modified. Ensure that the new
grammar is still unambiguous.

E -> E Transition Node
| Node Transition Node

J

Part F [3 points] Now we want to modify the grammar to specify start states and accepting
states. We give a few examples of the syntax below.

nl[start] ->(h) n2 ->(i) n3[accept]
nl[start, accept] ->(a) nl

Modify your grammar so that it accepts this new language. As before, make sure the grammar
is unambiguous.

Node -> Id
| Id ‘[€ Modifier_list ‘]’
5
Modifier_list -> Modifier_list €¢,’ Modifier

| Modifier

J

Modifier -> f‘start’
| ‘accept’

11

Login: cs164-

Part G [10 points] Complete the grammar below so that strings in the language are
translated into the following function calls.

Function name Description

addEdge(nodeld, nodeld, input) | Add a transition edge between two states. input
should either be a string of length 1, specifying the
input character or null, specifying an epsilon

transition.
addStart(nodeld) Specifies that nodelId is a start state.
addAccept(nodeld) Specifies that nodeId is an accepting state.

We provide an example of translation below.

Input: n1[start, accept] ->(c) n2 ->(s) n3 ->(1) n4 ->(6) n5 ->(4) n6 -> nl

Function Call Trace Automata

addStart(“n1”)
addAccept(“nl”)
addEdge(ﬂ'nl.U) ﬂ'nz)), “C”)
addEdge(“nZ”, “n3», “S”)
addEdge(ﬂ'nBJJ) ﬂ'n4JJ., ﬂ'l)J)
addEdge(ﬂ'n4)), ﬂ'n5)), “6”)
addEdge(ﬂ'nSJ.‘) ﬂ'n6)), ﬂ'4)))
addEdge(“n6”, “nl1l”, null)

Note that the output represents a trace of functions called during the execution of the parser,
not a textual program returned by parsing. Also, functions may be called in any order.

%ignore /[\t\v\f\r\n]+/
%%

S ->S Sep E %{ return %}
| E %{ return %}

J

12

Login: cs164-

E -> E Transition Node
%{ addEdge(nl.val, n3.val, n2.val); return n3.val %}
| Node Transition Node
%{ addkdge(nl.val, n3.val, n2.val); return n3.val %}

I

Transition -> '->" Input %{ return n2.val %}

3

Node -> Id
%{ return nl.val %}
| Id '[' Modifier_ list ']'
%{ if ('start' in n3.val)
addStart(nl.val);
if ('accept' in n3.val)
addAccept(nl.val);
return nl.val
%}
Modifier_list -> Modifier_list ',' Modifier
%{ var t = nl.val;
t[n3.val] = true;
return t
%}
| Modifier
%{ var t = {};
t[nl.val] = true;
return t
%}

J

Modifier -> 'start'
| 'accept'
5
Input -> "(' Character ")' %{ return n2.val %}
| %{ return null %}
5
Sep -> ;'

B
Character -> /[a-zA-Z_0-9]/

Id -> /[a-zA-Z_][a-zA-Z_0-9]+/ ;

13

Login: cs164-

14

Login: cs164-

Question 4: Bytecode translation [20 points]

In PA 4, you implemented compilation to bytecode of cs164 statements. In this question, we
will consider an alternative protocol for bytecode generation, i.e. we are going to change how
the recursive functions in the AST-to-bytecode compiler exchange information. We will adapt
the compilation rules accordingly.

Recall the interface for the btcnode function, that takes a node to translate, a target register,
and the array of bytecode generated so far:

function btcnode(node, target, btc) { ... }

We would like to modify this interface such that btcnode only takes one argument, the node
to translate.

function btcnode(node) { ... }

We also require that btcnode cannot access any global variables.

Part A [2 points] Give a data structure (a JavaScript object) that the new btcnode function
needs to return with this new protocol? Give a one-line description for each field you define.

The new btcnode will need to return a data structure with:
e target: the identifier of a fresh target node that it creates
e btc: the bytecode array that the node translates to

15

Login: cs164-

Part B [8 points] Complete the bytecode translation code below for addition.

The input to btcnode for an addition is an AST whose nodes include the fields:
e type: the node type, i.e. +
e operand1: the AST for the first operand
e operand2: the AST for the second operand

The bytecode instruction for addition is an object with the following fields:
e type: the instruction type, +
e operand1: the register for the first operand
e operand2: the register for the second operand
e target: the target register that should receive the addition result
You may use the following library functions:
e concat(xs1, xs2) returns the concatenation of the two sequences xs1 and xs2.

e append(xs, x) returns a new sequence that appends element x to the sequence xs.

e uniquegen() generates generate a unique name.

function btcnode(node) {
switch (node.type) {
case ‘+’:

var resl = btcnode(node.operandl);

var res2 = btcnode(node.operand2);

var target = uniquegen();

var addBtc = {
rtypeJ s g0 ,
‘operandl’: resl.target,
‘operand2’: res2.target,
‘target’: target

}s

return {
‘btc’: append(concat(resl.btc, res2.btc), addBtc),
‘target’: target

}s

break;

16

Login: cs164-

Part C [10 points] Complete the bytecode translation below for function calls.

The input to btcnode for a call is an AST which defines:
e type: the node type, i.e. call.
e function: the AST for the function
e arguments: the array of ASTs for the call arguments.

The bytecode instruction for the call is an object with the following fields:

type: the instruction type, call

function: the register that holds the function to call

arguments: the array of registers that hold each argument value

target: the target register that should receive the value returned by the call

You may use the library functions given for Part B.

Problem continued on the next page.

17

Login: cs164-

function btcnode(node) {
switch (node.type) {
case ‘call’:
var btcs = [];
var target = uniquegen();

var fnRes = btcnode(node.function);

var argTargets = [];
var argBtcs = [];
node.arguments.forEach(function(arg) {
var argRes = btcnode(arg);
argTargets = append(argTargets, argRes.target);
btcs = concat(btcs, argRes.btc);
1)

var callBtc = {
‘type’: ‘call’,
‘function’: fnRes.target,
‘arguments’: argTargets,
‘target’: target
}s
return {
‘btc’: append(concat(fnRes.btc, argBtcs), callBtc),
‘target’: target
}s

break;

18

