Login: cs164-

CS164 First Midterm Exam

Fall 2014
October 28", 2014

e Please read all instructions (including these) carefully.

e This is a closed-book exam. You are allowed a one-page, one-sided
handwritten cheat sheet.

e Write your name and login on this first sheet, and your login at the top of each
sheet.

e No electronic devices are allowed, including cell phones used merely as watches.

e Silence your cell phones and place them in your bag.

e Solutions will be graded on correctness and clarity. Each problem has a
relatively simple and straightforward solution. Partial solutions will be graded for
partial credit.

e There are 14 pages in this exam and 3 questions, each with multiple parts. If you
get stuck on a question move on and come back to it later.

e You have 1 hour and 20 minutes to work on the exam.

e Please write your answers in the space provided on the exam, and clearly mark
your solutions. You may use the backs of the exam pages as scratch paper. Do
not use any additional scratch paper.

LOGIN:

NAME:

Problem Max points Points
1 40
2 30
3 30

Sub Total 100

Login: cs164-

Question 1: Prototypes and Friends [40 points]

This question will test your understanding of inheritance in Lua. A tip on error messages:
Whenever we ask you to write the output of a program, use the string “Error” to represent any

error that your Lua program might produce.

Part A [8 points] What is the output of the following Lua program, which uses standard Lua

inheritance?
1 Plant = {yearsRemaining = 1}
2 function Plant:new (o)
3 o=o0or {}
4 setmetatable(o, self)
5 self. index = self
6 return o
7 end
8 function Plant:bloom()
9 self.yearsRemaining = ©
10 | end
11
12 [Perennial = Plant:new({yearsRemaining = 5})
13

14 | basil = Plant:new()
15 | coneflower = Perennial:new()
16 | lavender = Perennial:new()

17

18 | print("basil: "..tostring(basil.yearsRemaining)) -- '..' is string concat in Lua
19 | basil:bloom()

20 [print("basil: "..tostring(basil.yearsRemaining))

21

22 | print("coneflower: "..tostring(coneflower.yearsRemaining))
23 | coneflower:bloom()

24 [print("coneflower: "..tostring(coneflower.yearsRemaining))
25

26 | function Perennial:bloom()

27 self.yearsRemaining = self.yearsRemaining - 1

28 | end

29

30 | print("lavender: "..tostring(lavender.yearsRemaining))

31 | lavender:bloom()
32 | print("lavender:

'..tostring(lavender.yearsRemaining))

Login: cs164-

Part B [4 points] Put a check next to all the tables that are accessed to execute the field lookup
in line 22.

CIPlant table [JPerennial table Cbasil table [Iconeflower table [llavender table
Part C [4 points] Put a check next to all the tables that are accessed to execute the field lookup
in line 32.

CIPlant table [OPerennial table Cbasil table Oconeflower table [llavender table

Part D [9 points] If we append the following code to the end of the Part A code, what additional
output will the program produce?

33 | Annual = Plant:new({yearsRemaining = 1})

34 | function Annual:new (0)

35 o=o0or {}

36 setmetatable(o, o) -- changed

37 self.__index = self

38 return o

39 | end

40

41 | petunia = Annual:new({yearsRemaining = .5})

42 | print("petunia: "..tostring(petunia.yearsRemaining))
43 | petunia:bloom()

44 | print("petunia: "..tostring(petunia.yearsRemaining))

Part E [6 points] Below, please write a version of line 12 that does not use any colons.
Replacing the old line 12 with your modified line 12 must produce a program that exhibits exactly
the same behavior.

12 Perennial = Plant:new({yearsRemaining = 5})

Login: cs164-

Part F [9 points] Is it possible to write the program from Part A in a language that uses
traditional class-based inheritance, rather than prototype-based inheritance? Argue why or why
not. If not, point to a specific range of lines that prevents us from writing the Part A program
using classes.

Login: cs164-

Question 2: Tail Calls and Desugaring [30 points]

This question deals with the interplay between desugaring and optimizations.

Part A [5 points] What is tail call optimization? In what situations would a developer notice if an
interpreter implemented tail call optimization? Do not write outside the box. Shorter is better.

Part B [5 points] Given the following cs164 code, list out all lines which contain calls that can
be safely transformed to tail calls before execution.

1 | function foo(arg) {
2 def x = arg + 1

3 bar(x)

4 |}

5

6 function bar(arg) {
7 baz(arg) + 1

8 |1}

9

10 | function baz(arg) {
11 arg

12 |}

Lines:

Login: cs164-

Part C [5 points] Tail call optimization can get tricky with control flow, such as if, for and
while. Given the following code which contains such control flow, which of the underlined calls
can be converted into a tail call? Explain why the other cannot be converted.

Hint:
e The return value of a cs164 if, for or while is the last statement executed inside the

body.

1 | function qux(arg) {

2 if (arg == 09) {

3 (%]

4 } else {

5 bar(arg)

6 }

7 |}

8

9 | function corge(arg) {

10 while (arg > 0) {

11 arg = arg - 1

12 qux(arg)

13 }

14 | }

Line

Part D [6 points] During the desugaring phase of your interpreter, we reduce all control flow

(such
when

as for, while, and if) to lambdas. Write the equivalent cs164 program that is produced
the qux function from the code above is desugared. (The body of qux should not contain

if after desugaring.)

function qux(arg) {

Login: cs164-

Part E [9 points] Once desugaring is complete, tail call optimization is simple since there are
no control flow constructs to handle except for lambdas and calls. Fill in the algorithm below
which takes in bytecode, and identifies which calls should be converted to tail calls.

Tips:
e To identify a call to a tail call, simply set the “tailcall” field of the call's bytecode instruction
to true
o inst.tailcall = true
You can assume that the last instruction in any block of bytecode is a return instruction
You can also assume that each instruction has a unique target register

To familiarize you with the bytecode format, we provide an example of CS164 converted to
bytecode instructions.

function foo(x) | [

{
X + 1 {type: €‘lambda’, args: [‘x’]
} body: [
{type: €‘id’, name: ‘x’, target: ‘ri’},
foo() {type: €‘int-1it’, value: €1°, target: ‘r2’},

{type: ‘add’, opl: ‘ri1’, op2: ‘r2’, target: ‘r3’},
{type: ‘return’, value: ‘r3°’}

1

target: ‘r4’°

}s

{type: ‘def’, name: ‘foo’, value: ‘r4’, target: ‘r5°},

{type: ‘id’, name: ‘foo’, target: ‘r6’},
{type: €‘call’, function: ‘r6’, args: [], target: ‘r7°},
{type: ‘return’, value: ‘r7°’}

Login: cs164-

function tailcall(insts) {
var returnReg = insts[insts.length - 1].value

0; i < insts.length; ++i) {
insts[i];
inst.type;

for (var i
var inst
var type

if (type == ‘call’) {

} else if (type == €lambda’) {

Login: cs164-

Question 3: Coroutines [30 points]

In this problem, we are interested in solving the same fringe problem. Two binary trees have the
same fringe if they have exactly the same leaves reading from left to right.

For instance, consider the trees t1 and t2 in the following 164 code:

def leafA = { leaf = "a" }

def leafB = { leaf = "b" }

def leafC = { leaf = "c" }

def tAB = { leaf = null, left = leafA, right = leafB }
def tBC = { leaf = null, left = leafB, right = leafC }
def t1 = { leaf = null, left = tAB, right = leafC }
def t2 = { leaf = null, left = leafA, right = tBC}

Both t1 and t2 have the same fringe, namely, the sequence [a, b, c].

You will write methods that can be used to solve the same fringe problem using coroutines.

Login: cs164-

Part A [8 points] As a starting point, we give you below a function to print the fringe of a tree:

def printFringe(tree) {

if (tree.leaf != null) {
print(tree.leaf)

} else {
printFringe(tree.left)
printFringe(tree.right)

}

}

Complete the following 164 code which uses coroutines to return an iterator of fringe elements
for one tree.

Your implementation must:
e use coroutines: Fringe elements are yielded one by one to the resumer.
e return null to indicate the end of the stream.
e be lazy: Don’t precompute all elements at the first call. Compute one element in each call
to the iterator.

def fringeCo(tree) {

}

def fringeIter(tree) {
def co = coroutine(fringeCo)
lambda() { resume(co, tree) }

}

10

Login: cs164-

Part B [14 points] Now, you will write a function that traverses two trees concurrently, and
returns an iterator over pairs of elements, one element from each fringe in order.

Your implementation must:
e take a list of (two) trees as argument.

e enumerate pairs of elements up to (and including) the first pair that includes a null

element.
use fringelter from Part A.

return null to indicate the end of the stream.

be lazy, as in Part A.

You may use the syntax {x, y} to construct a list with the two elements x and y.

Example:
input output
def trees = {t1, t2} {0: a, 1: a}
for (e in fringePairsIter(trees)) { {0: b, 1: b}
print e {0: ¢, 1: c}
) {0: null, 1: null}
def trees = {t1, leafC} {0: a, 1: c}
for (e in fringePairsIter(trees)) { {0: b, 1: null}

print e

}

11

Login: cs164-

def fringePairsCo(trees) {

}

def fringePairsIter(trees) {
def co = coroutine(fringePairsCo)
lambda() { resume(co, trees)}

}

12

Login: cs164-

Part C [8 points] Generalize your code from the previous part to compare fringes for any
number of trees.

Given a list of N trees as argument, your implementation must:

return lists (of length N) that contain the next element from each fringe.
enumerate all lists up to (and including) the first one that includes a null element.
use fringelter from Part 1.

return null to indicate the end of the stream.

be lazy, as in Part 1.

Assume you have access to the following functions: map, exists, append. These functions do
not modify their arguments. Here are examples of their usage:

input output

print map({1, 2, 3}, lambda(x) {x + 1}) {2, 3, 4}

print exists({1, 2, 3}, lambda(x) {x == 2}) true

print exists({1, 2, 3}, lambda(x) {x == 4}) false

print append({1, 2, 3}, 4) {1, 2, 3, 4}

Example:

input output

def trees = {tl1l, t2, leafC} {0: a, 1: a, 2: c}

for (e in fringeTuplesIter(trees)) { {0: b, 1: b, 2: null}
print e

}

13

Login: cs164-

def fringeTuplesCo(trees) {

}

def fringeTuplesIter(trees) {
def co = coroutine(fringeTuplesCo)
lambda() { resume(co, trees)}

}

14

