
P a g e | 1

Second Midterm Exam
CS164, Fall 2007

Nov 8, 2007

 Please read all instructions (including these) carefully.

 Write your name, login, and SID.

 No electronic devices are allowed, including cell phones used as watches.

 Silence your cell phones and place them in your bag.

 The exam is closed book, but you may refer to one (1) page of handwritten notes.

 Solutions will be graded on correctness and clarity. Each problem has a
relatively simple and straightforward solution. Partial solutions will be graded
for partial credit.

 There are 6 pages in this exam and 4 questions, each with multiple parts. If you
get stuck on a question move on and come back to it later.

 You have 1 hour and 20 minutes to work on the exam.

 Please write your answers in the space provided on the exam, and clearly mark
your solutions. You may use the backs of the exam pages as scratch paper. Do
not use any additional scratch paper.

LOGIN: _______________________

NAME: _______________________

SID: _______________________

Problem Max points Points

1 20

2 30

3 30

4 20

TOTAL 100

P a g e | 2

Problem 1: Activation Records [20 points]

Part 1 [5 points]: Even a statically scoped language needs a dynamic link in its

activation record. What purpose does the dynamic link serve?

Answer: ___

Part 2 [10 points]: Draw the configuration of the call stack at the point when this

program reaches the print statement. Include in your figure:

 Dynamic links

 Static links

 Arguments

 Local variables

You can ignore other content of the activation record.

x = 0
function f()

 local x = 1
 function g(n)
 local y = n
 if n>0 then g(n-1)
 else print(y*x) end
 end
 g(3)

end

f()

Your answer:

This is the stack. It

grows upwards from the

bottom.

args

locals

SL

DL

P a g e | 3

Problem 2: Visitors, Object-Orientated Programming [30 points]

interface ASTNode {
 public void accept (Visitor v);
}

class IdentifierNode implements ASTNode {
 public final String id;
 public IdentifierNode (String id) {
 this.id = id;
 }
 public void accept (Visitor v) {
 System.out.println("1");
 v.visit(this);
 }
}
class NumberNode implements ASTNode {
 public final String num;
 public NumberNode (String num) {
 this.num = num;
 }
 public void accept (Visitor v) {
 System.out.println("2");
 v.visit(this);
 }
}
class BinopNode implements ASTNode {
 public final String op;
 public final ASTNode lhs;
 public final ASTNode rhs;
 public BinopNode (ASTNode lhs,
 String op,
 ASTNode rhs) {
 this.lhs = lhs;
 this.op = op;
 this.rhs = rhs;
 }
 public void accept (Visitor v) {
 System.out.println("3");
 v.visit(this);
 }
}

Part 1 [15 points]: What does this program output? Answer: ____________________

Part 2 [7 points]: Circle one call expression that must decide at run time which of

multiple functions to call. Indicate among what functions it is choosing, by drawing

arrows from the call to the function definitions.

Part 3 [8 points]: Put in a box one call expression at which the compiler must decide at

compile time which of multiple functions to call. Indicate among what functions it is

choosing, by drawing arrows from the call to the function definitions.

class Visitor {
 public void visit (ASTNode n) {
 System.out.println("4");
 n.accept(this);
 }
 public void visit (IdentifierNode n) {
 System.out.println("5");
 }
 public void visit (NumberNode n) {
 System.out.println("6");
 }
 public void visit (BinopNode n) {
 System.out.println("7");
 n.lhs.accept(this);
 n.rhs.accept(this);
 }
}

class FindFree extends Visitor {
 public Set variables;
 public FindFree () {
 this.variables = new HashSet();
 }
 public void visit (IdentifierNode n) {
 System.out.println("8");
 variables.add(n);
 }
}

// Construct AST for expression 1+i
ASTNode a = (ASTNode) new BinopNode(
 new NumberNode("1"),
 "+",
 new IdentifierNode("i")
);

Visitor v = (Visitor) new FindFree();
v.visit(a);

P a g e | 4

Problem 3: Closures [30 points]

Part 1 [5 points]: What does the following program output? Answer: __, __, __, __

function f()
 local x = 1;
 return function () x = x+1; return x end
end

i1 = f()
i2 = f()
print(i1(), i2(), i1(), i2())

Part 2 [5 points]: How many copies of variable x are created during the execution of

the above program? Answer: __

Part 3 [5 points]: Indicate (by drawing a ‘*’ sign) where in the code can these

variable(s) be deallocated. Indicate the earliest point(s) where deallocation is safe.

Continues on next page

P a g e | 5

Part 4 [15 points]: The Lua code below implements a list module (you have seen a

similar code in the lecture). Your goal is to implement the function iterator() so that it

can be used to iterate over the values of the list exactly as shown below.

Use closures to implement the iterator functionality. Assume that the list is not modified

while an iterator operates on it, but two iterators may simultaneously iterate over the

same list.

List = {}
function List.new ()
 return {first=0, last=0}
end
function List.push(list,value)
 list[list.first] = value
 list.first = list.first+1
end
function List.remove(list,value)
 if list.last >= list.first then return nil end
 local last = list.last
 list.last = list.last + 1
 return list[last]
end

myList = List.new()

List.push(myList, 1)
List.push(myList, 2)
List.push(myList, 3)

next = List.iterator(myList)

while true do
 element = next()
 if element == nil then break end
 print(element) -- outputs 1 2 3
end

P a g e | 6

Problem 4: Syntax Directed Translation [20 points]

The code below implements a simple version of your Google calculator from Project 3.

You are asked to find and correct a bug in the code. The incorrect behavior can be seen

on the input -3!. The correct output should be -6. However, the calculator outputs an

error message. Hint: the bug is not in the factorial() function.

 %import mymodule
 %ignore /[\t\n]/
 %left '+'
 %right '-'
 %left '!'
 %%
 S -> E %{ print(n1.val); %}
 ;
 E -> E '+' E %{ return(n1.val+n3.val); %}
 | '-' E %{ return(-n2.val); %}
 | E '!' %{ return(mymodule.factorial(n1.val)); %}
 | /(-)?(\d+\.\d*|\d+|\.\d+)/ %{ return float(n1.val); %}
 ;

Mymodule.py:

import math

def factorial(n):
 if n < 0:
 print 'factorial is undefined for negative numbers'
 raise Exception()
 if math.modf(n)[0] != 0:
 print 'factorial is undefined for non-integers'
 raise Exception()
 result = 1
 for i in range(1,int(n)+1):
 result *= i
 return result

Part 1 [13 points]: Explain precisely why the calculator behaves incorrectly. For full

credit, you must explain what went wrong on the input -3!. Draw a figure illustrating the

problem on this input.

Part 2 [7 points]: Correct the bug. Make the change directly in the given code.

