
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Prof. R. Fateman
Fall, 2001

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001,
8-11AM

Some of the problems had alternative solutions. We suggest one or occasionally alternative
solutions. figures

1. [12 points] Consider the following language L1. L1 consists of sequences of three different
symbols < w >. A sentence in L1 is either the single symbol w, or it begins with < followed
by zero or more sentences and ends with >. For example, the following are sentences:

w
< >
< w w >
< w < > >
< < < > w > >
< < w < w > < > > w < w > w >

a. [4] Write a simple grammar for L1. Make sure it is NOT left recursive.
SOLUTION

S -> w | < L >
L -> S L | epsilon

b. [4] On the reverse of this page, write a recursive descent parser that accepts exactly
the language L1.

SOLUTION

(defun s()(case (peek)(w (eat ’w)) (< (and (eat ’<)(l)(eat ’>)))))
(defun l()(case (peek)((w <)(and (s)(l)))))
;; many other versions possible.

c. [2] This grammar could describe (possibly nested) comments in a conventional pro-
gramming language where < = “begin comment”, > = “end comment”, and w = “anything
else” You cannot write a finite state machine that accepts exactly L1. Please explain why.

SOLUTION

1

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 2

Any FSM would fail to recognize sufficiently deeply nested
matching < .. < ...> ...> because it has only finite memory.

d. [2] Consider another language, L2. L2 is the same as L1 except that comments are not
nested, and sequences of comments allowed. For example < w w > < w > < > is in L2. The
first 3 examples given for L1 are also in L2. Draw, in the space below, a finite state machine
that accepts L2.

SOLUTION

you need about 4 states to recognize w | (<w*>)* .

2. [12 points]
Here’s an assembly language program printed exactly as it came out of our code generator.

Write it in Tiger. That is, “unassemble” it.

code generation:
0: args 0
4: pushenv 1 // (f)
8: fn

0: args 1
4: lvar 3 0 // x
8: pushi 1
12: <
16: jumpz 28
20: pushi 1
24: jump 80
28: save 52
32: lvar 3 0 // x
36: pushi 1
40: -
44: lvar 2 0 // f
48: callj 1
52: save 76
56: lvar 3 0 // x
60: pushi 2
64: -
68: lvar 2 0 // f
72: callj 1
76: +
80: return

12: lset 2 0 // f
16: pop
20: save 36
24: pushi 5
28: lvar 2 0 // f

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 3

32: callj 1
36: popenv
40: exit 0

The Tiger version:
SOLUTION

let function f(x:int):int = if (x<1) then 1 else f(x-1)+f(x-2) in f(5) end

3. [3 points] What does the op-code fn in the virtual machine do?
SOLUTION

1. creates function object; 2. puts current environment in the
environment of that object, 3. pushes that object [its address]
on the runtime stack.

4. [6 points] In the Tiger interpreter tig-interp there is a big case statement that looks
at the operator of the expression being interpreted. If the expression is (AssignExp x y), the
appropriate branch is

(AssignExp (set-var (elt x 1)(elt x 2) env))

What would be wrong with just implementing set-var in place, by

(AssignExp (setf (tig-interp (elt x 1))(tig-interp (elt x 2)) env))

Hints: use the words lvalue, rvalue, environment.
SOLUTION

There are lots of things wrong. tig-interp takes another
argument, env. setf does not. But that’s just a start.
set-var must compute the l-value of (elt x 1), not the r-value.
then compute the r-value of (elt x 2) in environment env.
(This is almost done by the suggested substitute). 3. store
rvalue in env. Lisp’s setf doesn’t do anything with the
tiger env.

5. [4 points] In this Scheme expression we use the call/cc construction:

(let ((x 200))
(+ (call/cc (lambda (cc)

(let ((x 300))
(set! foo cc)
(+ 20 x))))

x))
;; doesn’t use the cc but saves it

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 4

a. [2] What does (foo 500) return and why?
SOLUTION

700 because 200 is the value for x at the call/cc and (+500 200) is 700

b. [2] What several pieces of information must be encoded in foo? (Consider your
knowledge of the Tiger virtual machine and/or the interpreter).

SOLUTION

environment at the point of call/cc, continuation of the
computations at the call/cc

6. [6 points] Consider the following two programs.
/* 1 */ let type zz={a:int} var q:zz:=zz{a=3}in q.a end
/* 2 */ let type zz={a:int} var q:zz:=nil in q.a end
a. [2] The first typechecks correctly, and when run, it leaves 3 on the stack when it exits.

The second program also passes the typechecker, but dies when you run it. Why?
SOLUTION

Bad access to q.a in 2nd program makes it fail. q is nil and has
no parts to access. It passes the type checker because such accesses
were not checked. In general such accesses cannot be checked until
runtime.

b. [4] A sequence of about 5 instructions could have been inserted into the code by a more
careful compiler, to make the program exit, say with exit code 1, under this condition. Fix
the listing below of program 2 to show what the compiler might generate. You may find that
useful opcodes include lvar, dup, jumpz, exit, =, but not necessarily in that order.

Here is the code for /* 2 */

0: args 0
4: pushenv 1 // (q)
8: lvar 0 2 // nil
12: lset 2 0 // q
16: pop
20: lvar 2 0 // q
24: iconst 0
28: mem
32: popenv
36: exit 0

SOLUTION

insert after 20:
dup
lvar 0 2 //nil
=

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 5

jumpz L2
exit 1 //illegal mem ref
L2:

// also renumber locations 20.

7. [12 points] Classify each of the following problems as lexical L , syntactic S, type checking
T, run-time R or none of the above N. If the question needs to refer to a specific programming
language to make sense, use Tiger. If you are unsure of your answer, you may write one of these
letters and write a footnote explanation on the reverse. We will not read your explanation if
your answer is right.

SOLUTION

T,S, STN, T,L,R,R,R,R,T,N,T

Record field reference to non-existent subfield
Unbalanced parentheses
Comma inside number (e.g. 1,000 in Tiger)
Wrong type of actual parameter
Missing end-of-comment delimiter
Division by zero
Array reference out of bounds
Initialization of array z:=intarray[-4] of 10
Reference through a nil pointer
Duplicate function name in scope
Type and Function with same name
Undefined function

8. [9 points] Consider the addition of an inheritance hierarchy to Tiger. In a type definition,
right after the name of the type, an optional pair of parenthesis will enclose the parent type
of that type. (If it is omitted, the class forms a root class and has no parent.) All fields of
the parent are included as fields of this type.

For example, this now becomes legal Tiger.

let
type t1 = {a: int}
type t2(t1) = {b: int}
var x := t2{a = 1, b = 2}

in x.a + x.b end

(a) How will this affect the lexical analyzer?
SOLUTION

not at all

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 6

(b) How will this change the parser?
SOLUTION

the grammar must elaborate on type definitions to allow superclasses

(c) How does this change the type-checker?
SOLUTION

type t2(t1) must check that t1 is a record type. The record fields
for t2 must be set up to include the fields of t1, references to the
fields of var x of type t2 must be checked. There should be no
duplicate names in t1 and t2.

(d) How does this change the run-time system?
SOLUTION

If you have done the work earlier, no changes necessary.

(e) What about the code-generator?
SOLUTION

If you have done the work earlier, no changes necessary.

9. [6 points] Reduce each of the following lambda expressions to normal form if possible or
state that the expression has no normal form. It may help to explicitly show the reductions
you make.

We use (lambda(x) e) for λx.e in math notation, and (lambda (x y) e) is λx.λy.e . That
is, we allow multiple arguments.

a. (y (lambda (y) (y (lambda(x) (x y)))))
SOLUTION

no change

b. ((lambda (x y z)(x y z))(lambda(x) x)y)
SOLUTION

(lambda(z)(y z))

c. ((lambda (x y) y) ((lambda(x) (x x x))(lambda(z) ((z z) z))) z)
SOLUTION

z

d. if true is denoted (lambda(x y) x)and false is (lambda(x y) y) then how would
you express an “if expression” given like “if p, then t else e”?

SOLUTION

p t e

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 7

10. [8 points] The professor has changed the lexical analysis assignment and now requires
that you extend your Tiger scanner (written in Lisp) to accept both decimal and trinary
integers. Trinary numbers are expressed in base 3, using the digits 0, 1, and 2.

You must distinguish between the two number bases by insisting that decimal numbers
must NOT begin with a digit “0” and that trinary numbers always begin with a zero. Thus
counting in trinary goes like 01, 02, 010, 011, 012, 020. The number 0121 (base 3) =
1+2*3+1*9 or 16 (base 10).

The scanner produces only one type, “iconst” for an integer, and the “value” associated
with the token is a Lisp integer.

a. [4] On the reverse side of this page, draw a finite state machine that shows how such a
scanner works for numbers. Include transitions to error states.

SOLUTION

4 states suffice including one error state.

b. [2,2] Louis Reasoner is confused and asks the professor: “How can we type the number
zero in decimal, since it begins with a 0 and would thus be in trinary?

SOLUTION

0 trinary is the same value as 0 decimal so it doesn’t matter.

And what is the base for the Lisp integer that is passed to the parser?”
SOLUTION

irrelevant. We have no way of knowing. We can PRINT the number in
any base that is convenient to us, but the data structure inside
the computer could be something else.

Show you are not as confused as Louis by answering these questions in complete sentences
in the spaces above.

11. [9 points] Consider the following intermediate code:

a := a + b
c := a + b
d := c
d := a
f := 3
jump L1
e := c
d := a

L1: b := d
jumpz x L3

L2: b := f
L3: d := d - 1

SUGGESTED SOLUTIONS CS 164 Final Examination: December 18, 2001, 8-11AM 8

Put a box around each basic block. Draw all control flow edges. Draw a line through dead
code, assuming that only b and d are live after this portion of code has completed execution.

SOLUTION

5 blocks, 5 edges, dead code lines:
c:=a+b,
d:=c
e:=c
d:=a

12. [10 points] Mark the following statements as true (T) or false (F).
SOLUTION

F T F F T T T F - F

WARNING: points will be subtracted for incorrect answers, so don’t guess.
You can create a finite automaton to accept the language described by an arbitrary

context free grammar.
You can create a context free grammar to describe the language accepted by an

arbitrary finite automaton.
A regular expression is sufficient to describe the language of an arbitrary context-

free grammar.
Every LL(1) language can be described by a regular expression.
Every regular expression can be translated into a finite automaton and vice versa.
The table used to determine actions in an LALR(1) parser describes a finite-state

machine.
There are LALR(1) languages which require an arbitrary size stack to parse.
Lambda calculas always uses call by name.
All terminating evaluations of a lambda calculas expression terminate with the

same value.
This sentence is false.
Tiger semantics can be completely described by a context-free grammar.

