
 Page 1/14

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2016 Anthony D. Joseph

Midterm Exam #2 Solutions
April 20, 2016

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 12

2 26

3 24

4 22

5 16

TOTAL 100

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 2/14

1. (12 points total) True/False and Why? CIRCLE YOUR ANSWER AND WRITE
AN EXPLANATION (no credit will be given if no explanation is provided).
a. In addition to greatly reducing the overall failure probability, moving from a single

hard drive to using RAID 1 (mirroring) can also increase the throughput of small
random reads.

TRUE FALSE
Why?
TRUE. The small reads need only be sent to a single disk, so in theory, a
RAID-1 system can double small random read throughput. The correct
answer was worth 2 points and the justification was worth an additional 2
points.

b. The TCP transport protocol provides a reliable, in-order bytestream abstraction.

TRUE FALSE
Why?
TRUE. These are exactly the characteristics of TCP. The correct answer
was worth 1 point and the justification was worth an additional 2 points.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 3/14

c. The Byzantine failure model allows arbitrary behavior by a faulty system
component.

TRUE FALSE
Why?
TRUE. That is the definition of the model. The correct answer was worth
2 point and the justification was worth an additional 2 points.

d. Remote Procedure Calls provide identical semantics to local calls.

TRUE FALSE
Why?
FALSE. RPCs can suffer from network/server failures, so the users need
to deal with this difference. The correct answer was worth 2 points and the
justification was worth an additional 2 points.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 4/14

2. (26 points total) Memory and I/O.
a. (12 points) For each statement, CIRCLE the address translation scheme(s) for

which the statement is true.
i) (4 points) A process cannot directly read or write another process’ memory.

Assume there is no mmap() operation.

No translation

Base and Bound

Segmentation

Paging

Base and Bound, Segmentation, and Paging.

ii) (4 points) External fragmentation may occur.

No translation

Base and Bound

Segmentation

Paging

Base and Bound and Segmentation.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 5/14

iii) (4 points) Part of the process’ stack could be swapped out to disk while the
process continues to execute using the rest of the stack. Assume the stack is
located in a typical location for the type of address translation in use.

No translation

Base and Bound

Segmentation

Paging

Paging

b. (10 points) Consider a system with the following specifications:

• 46-bit virtual address space
• Page size of 8 KBytes
• Page table entry size of 4 Bytes
• Every page table is required to fit into a single page

How many levels of page tables would be required to map the entire virtual
address space?

In the space below, document the format of a virtual address under this translation
scheme. Briefly explain your rationale.
A 1-page page table contains 2,048 or 211 PTEs (22 *211 = 213 bytes), pointing to
211 pages (addressing a total of 211 * 213 = 224 bytes). Adding a second level
yields another 211 pages of page tables, addressing 211 * 211 * 213 = 235 bytes.
Adding a third level yields another 211 pages of page tables, addressing 211 * 211 *
211 * 213 = 246 bytes. So, we need 3 levels.
The correct answer is worth 3 pts. Correct reasoning is worth up to 7 pts (2 pts
for identifying that there are 211 PTEs per page, 2 pts for describing how page
tables are nested, and 3 pts based upon the quality of the argument):

11 bit page 11 bit page 11 bit page 13 bit offset

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 6/14

c. (4 points) Briefly explain, in four sentences or less, what is DMA and why DMA
enables a system to more efficiently handle I/O devices.

With DMA, the CPU does not have to be involved in the transfer of each
byte or word. It is only involved in the set up of the transfer.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 7/14

3. (24 points total) Demand Paging.
a. (18 points) Consider a demand paging system with 3 pages of physical memory.

When a page fault occurs, we use a page replacement algorithm to make space
for the new page by evicting a page from memory. Using the FIFO, Clock
Algorithm, and LRU page replacement algorithms, mark which pages will be in
physical memory after each page request. The first 3 rows for each algorithm are
pre-filled for you. For the clock algorithm, on a page fault the clock hand
advances before performing any checks or actions.

Time FIFO Clock LRU

– – – A B C D A B C D A B C D

A X X X

B X X X X X X

C X X X X X X X X X

D

 X X X X X X X X X

B

 X X X X X X X X X

A

X X X X X X X X X

B

X X X X X X X X X

A

X X X X X X X X X

D

X X X X X X X X X

C

X X X X X X X X X

Number of
page faults

7 6 6

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 8/14

b. (4 points) When a page fault occurs and a page is evicted, what entries in which

data structures must the OS invalidate?

When a page fault occurs, the OS must invalidate the TLB entry and page table
entry corresponding to the evicted page.

c. (2 points) In the Nth chance page replacement algorithm, explain the purpose of the
parameter N. Consider the effects of a small or large N.
N enables the OS to approximate the behavior of an LRU algorithm by tracking
approximately how long a page it is since a page was last referenced. A larger
value of N will enable a more finer grain approximation of LRU.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 9/14

4. (22 points total) Disks and File Systems.
a. (6 points) Name two performance-improving features that are provided by modern

disk controllers. For each of the features you name, briefly explain the benefits
and consequences of a disk controller that does not provide that feature.
i) Feature #1 – Benefits and consequences if it is not provided:

We decided to grade this question more leniently by interpreting
‘performance’ to be techniques/features that improve the performance of disk
operations OR reduce the complexity of the OS. Note that we did not accept
SMR as an answer because it somewhat reduces the performance of reads
(due to the high degree of ECC required) and it significantly reduces the
performance of writes (due to the need to write an entire shingled region
when writing a single block).
• Track buffer – Reads an entire track when a sector is requested. Pro:

makes sequential reads faster. Con: without it OS has to implement read
ahead. Note that we did not accept answers that confused the OS buffer
cache with a disk track buffer.

• TRIM for SSD. Pro: improves performance of writes. Con: slow writes
due to need to erase before writing

• ECC for HDDs. Pro: can recover data from failing sector. Con: data loss
• Disk scheduling. Pro: higher performance due to reduced seek/rotational

latencies. Con: more seek/rotational latency overhead
• DMA support. Pro: higher performance due to reduced CPU overhead.

Con: higher CPU overhead.
• Sector interleaving/spanning or track skewing. Pro: higher performance

for sequential access due to reduced rotational latencies. Con: higher
rotational latencies.

• Remapping of defective sectors/slip sparing. Pro: enables Logical Block
Addressing so the OS can view the disk as a linear sequence of blocks.
Con: without it OS, would have to manually keep track of failed sectors
and the locations of alternate sectors.

• Accelerometer for protection against drops. Pro: helps reduce damage by
moving head to spare track upon detection of a fall. Con: Damage to
HDD.

• RAID. Pro: helps protect against disk failure. Con: disk failure causes
data loss

• Disk buffers for writes. Pro: faster writes. Con: slower writes

ii) Feature #2 – Benefits and consequences if it is not provided:

See above.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 10/14

b. (5 points) If a disk subsystem receives an average of 10 requests per second and
each request has an average response time of 500ms, how many requests are in
the subsystem on average? Explain your answer.

5. We can apply Little’s Law: L = λW, where λ is the average arrival rate (10
requests per second) and W is the average response time (1/2 a second)

c. (4 points) The FAT file system eliminates external fragmentation by allocating disk
space in block-sized units. Considering that fact, briefly explain why
defragmentation is still sometimes necessary.

The disk blocks allocated to a file may be scattered across the disk.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 11/14

d. (3 points) In the UNIX 4.2 BSD FFS, inodes have direct pointers, a singly indirect
pointer, a doubly indirect pointer, and a triply indirect pointer. The maximum file
size supported by this inode type is approximately the same as the maximum file
size supported by an inode with only a triply indirect pointer. Briefly explain one
disadvantage of an inode design that only uses a triply indirect pointer instead of a
combination of pointers (other than the slightly reduced maximum file size).

Every file access would require four additional disk reads.

e. (4 points) Briefly, in one to three sentences, explain the purpose of the journal in a
journaling file system?

The journal is used to store the intentions of the OS when making changes to
the file system structures (and the data in a full journaling file system). During
boot, the journal is used to redo(or complete) any incomplete operations
(operations that were in-progress at the time of an OS crash or power
failure).

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 12/14

5. (16 points total) Pintos coding question: Verifying user pointers.
Your project group is tasked with implementing a new syscall for Pintos. This syscall
takes a linked list as one of its arguments, and your responsibility is to create a
function that checks the validity of the linked list, so the syscall handler can safely
dereference it. The value of head may be NULL, if the list is empty. This is function
signature of your syscall:

	
void	 foo(struct	 node	 *head);	

We have also defined the structure of the node struct, as well as
exit_thread_if_invalid(), a function that will verify the validity of user-
specified pointers.
	
struct	 node	
	 	 {	
	 	 	 	 int	 number;	
	 	 	 	 char	 buffer[16];	
	 	 	 	 struct	 node	 *next;	 	 	 	
	 	 	 	 //	 If	 this	 is	 the	 last	 node,	 next	 =	 NULL	
	 	 };	
	
/*	 Checks	 that	 P	 to	 P+SIZE-‐1	 is	 a	 valid	 user	 buffer.	
	 	 	 Kills	 the	 current	 thread	 if	 it	 is	 invalid.	 */	
void	 exit_thread_if_invalid(void	 *p,	 size_t	 size);	
	
uint32_t	 SYS_FOO	 =	 60;	 	 //	 The	 syscall	 number	 for	 foo()	

Fill in the syscall_handler() function on the next page so that it safely
handles the SYS_FOO syscall.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 13/14

static	 void	
syscall_handler	 (struct	 intr_frame	 *f)	 	
{	
	 	 uint32_t*	 args	 =	 ((uint32_t*)	 f-‐>esp);	
	 	 exit_thread_if_invalid(args,	 4);	
	
	
	
	
	
	 	 //	 Check	 if	 this	 is	 SYS_FOO	
	 	 if	 (_args[0]	 ==	 SYS_FOO_____________________)	 {	 	
	 	 	 	 exit_thread_if_invalid(&args[1],	 4);	
	 	 	 	 struct	 node	 *head	 =	 args[1];	
	 	 	 	 while	 (head	 !=	 NULL)	 {	
	 	 	 	 	 	 exit_thread_if_invalid(head,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sizeof(struct	 node));	
	 	 	 	 	 	 head	 =	 head-‐>next;	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
Solutions NAME: _______________________________________

 Page 14/14

	 	 	 	 //	 This	 will	 actually	 handle	 SYS_FOO,	
	 	 	 	 //	 	 	 assuming	 arguments	 are	 valid	
	 	 	 	 handle_foo(args,	 &f-‐>eax);	
	 	 }	 else	 {	
	 	 	 	 //	 Code	 for	 ALL	 other	 syscalls	 will	 go	 here.	
	 	 }	
}	

