
 Page 1/10

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2016 Anthony D. Joseph

Midterm Exam #2
April 20, 2016

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 12

2 26

3 24

4 22

5 16

TOTAL 100

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 2/10

1. (12 points total) True/False and Why? CIRCLE YOUR ANSWER AND WRITE
AN EXPLANATION (no credit will be given if no explanation is provided).
a. In addition to greatly reducing the overall failure probability, moving from a single

hard drive to using RAID 1 (mirroring) can also increase the throughput of small
random reads.

TRUE FALSE
Why?

b. The TCP transport protocol provides a reliable, in-order bytestream abstraction.

TRUE FALSE
Why?

c. The Byzantine failure model allows arbitrary behavior by a faulty system

component.

TRUE FALSE
Why?

d. Remote Procedure Calls provide identical semantics to local calls.

TRUE FALSE
Why?

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 3/10

2. (26 points total) Memory and I/O.
a. (12 points) For each statement, CIRCLE the address translation scheme(s) for

which the statement is true.
i) (4 points) A process cannot directly read or write another process’ memory.

Assume there is no mmap() operation.

No translation

Base and Bound

Segmentation

Paging

ii) (4 points) External fragmentation may occur.

No translation

Base and Bound

Segmentation

Paging

iii) (4 points) Part of the process’ stack could be swapped out to disk while the

process continues to execute using the rest of the stack. Assume the stack is
located in a typical location for the type of address translation in use.

No translation

Base and Bound

Segmentation

Paging

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 4/10

b. (10 points) Consider a system with the following specifications:
• 46-bit virtual address space
• Page size of 8 KBytes
• Page table entry size of 4 Bytes
• Every page table is required to fit into a single page

How many levels of page tables would be required to map the entire virtual
address space?

In the space below, document the format of a virtual address under this translation
scheme. Briefly explain your rationale.

c. (4 points) Briefly explain, in four sentences or less, what is DMA and why DMA
enables a system to more efficiently handle I/O devices.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 5/10

3. (24 points total) Demand Paging.
a. (18 points) Consider a demand paging system with 3 pages of physical memory.

When a page fault occurs, we use a page replacement algorithm to make space
for the new page by evicting a page from memory. Using the FIFO, Clock
Algorithm, and LRU page replacement algorithms, mark which pages will be in
physical memory after each page request. The first 3 rows for each algorithm are
pre-filled for you.

Time FIFO Clock LRU

– – – A B C D A B C D A B C D

A X X X

B X X X X X X

C X X X X X X X X X

D

B

A

B

A

D

C

Number of
page faults

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 6/10

b. (4 points) When a page fault occurs and a page is evicted, what entries in which

data structures must the OS invalidate?

c. (2 points) In the Nth chance page replacement algorithm, explain the purpose of the
parameter N. Consider the effects of a small or large N.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 7/10

4. (22 points total) Disks and File Systems.
a. (6 points) Name two performance-improving features that are provided by modern

disk controllers. For each of the features you name, briefly explain the benefit
consequences of a disk controller that does not provide that feature.
i) Feature #1 – Benefits and consequences if it is not provided:

ii) Feature #2 – Benefits and consequences if it is not provided:

b. (5 points) If a disk subsystem receives an average of 10 requests per second and
each request has an average response time of 500ms, how many requests are in
the subsystem on average? Explain your answer.

c. (4 points) The FAT file system eliminates external fragmentation by allocating disk
space in block-sized units. Considering that fact, briefly explain why
defragmentation is still sometimes necessary.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 8/10

d. (3 points) In the UNIX 4.2 BSD FFS, inodes have direct pointers, a singly indirect
pointer, a doubly indirect pointer, and a triply indirect pointer. The maximum file
size supported by this inode type is approximately the same as the maximum file
size supported by an inode with only a triply indirect pointer. Briefly explain one
disadvantage of an inode design that only uses a triply indirect pointer instead of a
combination of pointers (other than the slightly reduced maximum file size).

e. (4 points) Briefly, in one to three sentences, explain the purpose of the journal in a
journaling file system?

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 9/10

5. (16 points total) Pintos coding question: Verifying user pointers.
Your project group is tasked with implementing a new syscall for Pintos. This syscall
takes a linked list as one of its arguments, and your responsibility is to create a
function that checks the validity of the linked list, so the syscall handler can safely
dereference it. The value of head may be NULL, if the list is empty. This is function
signature of your syscall:

	
void	 foo(struct	 node	 *head);	

We have also defined the structure of the node struct, as well as
exit_thread_if_invalid(), a function that will verify the validity of user-
specified pointers.
	
struct	 node	
	 	 {	
	 	 	 	 int	 number;	
	 	 	 	 char	 buffer[16];	
	 	 	 	 struct	 node	 *next;	 	 	 	
	 	 	 	 //	 If	 this	 is	 the	 last	 node,	 next	 =	 NULL	
	 	 };	
	
/*	 Checks	 that	 P	 to	 P+SIZE-‐1	 is	 a	 valid	 user	 buffer.	
	 	 	 Kills	 the	 current	 thread	 if	 it	 is	 invalid.	 */	
void	 exit_thread_if_invalid(void	 *p,	 size_t	 size);	
	
uint32_t	 SYS_FOO	 =	 60;	 	 //	 The	 syscall	 number	 for	 foo()	

Fill in the syscall_handler() function on the next page so that it safely
handles the SYS_FOO syscall.

CS 162 Spring 2016 Midterm Exam #2 April 20, 2016
NAME: _______________________________________

 Page 10/10

static	 void	
syscall_handler	 (struct	 intr_frame	 *f)	 	
{	
	 	 uint32_t*	 args	 =	 ((uint32_t*)	 f-‐>esp);	
	
	
	
	
	
	 	 //	 Check	 if	 this	 is	 SYS_FOO	
	 	 if	 (____________________________________)	 {	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	 	 	 //	 This	 will	 actually	 handle	 SYS_FOO,	
	 	 	 	 //	 	 	 assuming	 arguments	 are	 valid	
	 	 	 	 handle_foo(args,	 &f-‐>eax);	
	 	 }	 else	 {	
	 	 	 	 //	 Code	 for	 ALL	 other	 syscalls	 will	 go	 here.	
	 	 }	
}	

