
 Page 1/14

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2016 Anthony D. Joseph

Midterm Exam #1 Solutions
March 9, 2016

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 18

2 24

3 27

4 19

5 12

TOTAL 100

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 2/14

1. (18 points total) Short answer
a. (9 points) True/False and Why? CIRCLE YOUR ANSWER.

i) If every thread acquires locks in the same order (for example, sema_down(A);	
sema_down(X);	 sema_down(Y)), deadlock cannot occur.

TRUE FALSE
Why?
TRUE. If all the threads acquire locks in the same order there is no
circular waiting. The correct answer was worth 1 point and the
justification was worth an additional 2 points.

ii) It is safe to call sema_up() or lock_release() from an interrupt handler in
Pintos, because they cannot cause the current thread to sleep.

TRUE FALSE
Why?
FALSE. Lock release should only be called by the holder of the lock. The
correct answer was worth 1 points and the justification was worth an
additional 2 points.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 3/14

iii) The function getchar(), which reads a character from standard input, can
sometimes run without making any system calls.

TRUE FALSE
Why?
TRUE. While getchar() returns a single character at a time to its
caller, it may receive multiple characters from the kernel. The correct
answer was worth 1 points and the justification was worth an additional 2
points.

b. (6 points) Kernels.

i) Briefly, in two to three sentences, explain what a kernel panic is and why it
causes a system crash.

A kernel panic occurs when the kernel encounters an internal error or
exception that it cannot recover from, such as a failed assertion or an attempt
to dereference a NULL pointer. Since the system cannot function without the
kernel, and there is nothing to allow the kernel to recover, the system crashes.

ii) Briefly, in two to three sentences, explain the two mechanisms used by the
Operating System kernel to prevent user programs from overwriting kernel
data structures.
(1) Address spaces prevent user programs from overwriting kernel data

structures.
(2) Dual-Mode Operation prevents user programs from changing the

translation data structures.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 4/14

(3) System calls use a dispatch table to control access to kernel routines.
(4) System calls sanity check their arguments.

c. (3 points) Briefly, in two to three sentences, explain why the space shuttle failed to
launch on April 10, 1981 – be specific but brief in your answer.

As described in Garman’s “The Bug Heard 'round the World,” paper, due to
software changes, the PASS could with low probability (1 in 67) incorrectly
initialize the system time. This resulted in the PASS being one cycle out of
synchronization with the BFS. This caused the first shuttle launch to abort 20
minutes prior to the scheduled launch. The bug points out the challenges of
building and maintaining real-time systems, even when hundreds of
programmers are involved and hundreds of hours are spent on testing.
We deducted 1.5 points for answers that did not specify that the problem was
a synchronization error between the two sets of computers, and for answers
that included incorrect errors (e.g., priority inversion or deadlock).

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 5/14

2. (24 points total) Scheduling. Consider the following set of processes, with associated
processing times and priorities:

Process Name Processing Time Priority
A 4 3
B 1 1
C 2 3
D 1 4
E 4 2

For each scheduling algorithm, fill in the table with the process that is running on the
CPU (for timeslice-based algorithms, assume a 1 unit timeslice). Notes:

• A smaller priority number implies a higher priority.
• For RR and Priority, assume that an arriving thread is run at the beginning of its

arrival time, if the scheduling policy allows it.
• All of the processes arrive at time 0 in the order Process A, B, C, D, E.
• Assume the currently running thread is not in the ready queue while it is running.
• Turnaround time is defined as the time a process takes to complete after it arrives

Time FIFO RR SRTF Priority
0

A A B B

1

A B D E

2

A C C E

3

A D C E

4

B E A E

5

C A A A

6

C C A A

7

D E A A

8

E A E A

9

E E E C

10

E A E C

11

E E E D

Average
Turnaround
Time

((4-0)+(5-0)+
(7-0)+(8-0)+
(12-0))/5 = 7.2

((11-0)+(2-
0)+(7-0)+(4-
0)+(12-0))5 =
7.2

(8+1+4+2+12)/
5 = 5.4

(9+1+11+12+5)
/5= 7.6

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 6/14

Each column was graded separately with the same breakdown of 6 points. The
sequence was 4 of the 5 points and the turnaround time was 2 of the 5 points.
-0 Correct
-4 Major errors in schedule. The answer provided was not one of the common
misinterpretations.
-2 Minor errors in schedule. The answer provided is one of the common
misinterpretations or has a small mistake in it.
-2 Incorrect turnaround time. We did not double penalize here. If you provided
the correct turnaround time according to your schedule, you received full credit
for the final two points.

3. (27 points total) Synchronization

a. (5 points) Consider the following procedure written in C:
struct	 X	 data;	
	
struct	 X	 *getX(const	 char	 key[])	 {	
	 	 	 	 computeDatafromKey(key,	 &data);	
	 	 	 	 	 	 	 //	 a	 value,	 based	 on	 key,	 is	 computed	 	
	 	 	 	 	 	 	 //	 	 and	 stored	 in	 data	
	 	 	 	 return	 &data;	
}

i) (2 points) In a single-threaded program, one would call getX to obtain an item

of type struct X, based on the value of key. Briefly, in one or two sentences,
explain what problems would occur if one used getX in a multithreaded
program?

Since data is statically allocated, if multiple threads call getX they will
overwrite the value stored in data.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 7/14

ii) (3 points) Rewrite getX to address the problem you mentioned in 3.a.i.
struct	 X	 *getX(const	 char	 key[])	 {	

The solution is to allocate a structure from the heap:
	 	 	 	 struct	 X	 *newdata	 =	 malloc(sizeof(struct	 X));	
	 	 	 	 computeDatafromKey(key,	 &newdata);	
	 	 	 	 	 	 	 //	 a	 value,	 based	 on	 key,	 is	 computed	
	 	 	 	 	 	 	 //	 and	 stored	 in	 data	
	 	 	 	 return	 newdata;	
	

}

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 8/14

b. (15 points) Consider a multithreaded operating system that includes monitors and
condition variables with the following primitives:
mon_t	 *mon_create()	 /*	 Creates	 a	 new	 monitor	 */	
void	 mon_lock(mon_t	 *m)	 /*	 Acquires	 the	 monitor’s	 lock	 */	
void	 mon_release(mon_t	 *m)	 /*	 Releases	 the	 monitor’s	 lock	 */	
	
cv_t	 *cv_create(mon_t	 *m)	 /*	 Creates	 a	 condition	 variable	

	 	 	 associated	 with	 monitor	 m	 */	
void	 cv_wait(cv_t	 *cv)	 /*	 Blocks	 on	 the	 condition	 variable	 */	
void	 cv_signal(cv_t	 *cv)	 /*	 Wakes	 a	 thread	 waiting	 on	 cv	 */	
void	 cv_broadcast(cv_t	 *cv)	 /*	 Wakes	 all	 threads	 waiting	 on	 cv	 */	

Your task is to implement general purpose semaphores under this system.
typedef	 struct	 {	
	 	 mon_t	 *m;	
	 	 cv_t	 *c;	 	
	 	 int	 value;	 	
}	 sema_t;	 	
	
You may use these syscalls: malloc(), free(), sbrk(), open(), close(), read(), write()
	
sema_t	 *sema_create(int	 initval)	 {	
	 	 	 	 	 sema_t	 *s;	
	 	 	 	 	 if	 (initval	 <	 0)	 return	 NULL;	
	 	 	 	 	 s	 =	 (sema_t	 *)	 malloc(sizeof(sema_t));	
	 	 	 	 	 s-‐>m	 =	 mon_create();	
	 	 	 	 	 s-‐>c	 =	 cv_create(s-‐>m);	
	 	 	 	 	 s-‐>value	 =	 initval;	
	 	 	 	 	 return	 s;	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
}	 	

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 9/14

	
void	 sema_down(sema_t	 *s)	
{	
	 	 	 	 	 mon_lock(s-‐>m);	
	 	 	 	 	 while	 (s-‐>value	 <=	 0)	 cv_wait(s-‐>c);	
	 	 	 	 	 s-‐>value-‐-‐;	
	 	 	 	 	 mon_release(s-‐>m);	
	
	
	
	
	

	
	

}	 	
	
void	 sema_up(sema_t	 *s)	
{	
	 	 	 	 	 mon_lock(s-‐>m);	
	 	 	 	 	 s-‐>value++;	
	 	 	 	 	 cv_signal(s-‐>c);	
	 	 	 	 	 mon_release(s-‐>m);	
	
	
	
	
	
	
	
	
}	 	

c. (7 points) Consider the following three threads in a concurrent program that uses
semaphores Sem1, Sem2, and Sem3.

Thread 1
L1: sema_down(Sem3);
 print(“2");
 sema_up(Sem2);
 goto L1;

Thread 2
L2: sema_down(Sem1);
 print(“6");
 sema_up(Sem3);
 goto L2;

Thread 3
L3: sema_down(Sem2);
 print(“1");
 sema_up(Sem1);
 goto L3;

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 10/14

i) (4 points) Are there initial values that can be given to the semaphores so that
the threads cooperate to print a string that begins with 16216216216216? If
so, give the initial values (tell which value is to be used for which semaphore).

Yes. Initialize the semaphores as follows: Sem1=0, Sem2=1, Sem3=0

ii) (3 points) Suppose the initial values are Sem1=2, Sem2=6, Sem3=1. Is it

possible for the threads to cooperate to produce a string that begins with
1122622? Explain your answer.

No

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 11/14

4. (19 points) Coding questions.
a. (13 points) We would like to implement the Unix utility, tee, which reads data

from standard input and writes that data to standard output, as well as all of the
files that are passed on the command line. For example, if you run the following
command in bash:

$	 echo	 "CS162	 is	 the	 best!"	 |	 tee	 letter_to_mom.txt	 personal_motto.txt	

Then, tee would print out “CS162	 is	 the	 best!” to the terminal (standard
output), and it would also store “CS162	 is	 the	 best!” into a file named
“letter_to_mom.txt” and a file named “personal_motto.txt”.

i) (7 points) We have started writing the code for you. Fill in the blank spots in

the following code:

char	 buffer[1024];	
int	 main(int	 argc,	 char	 **argv)	 {	
	 int	 files[argc];	
	 files[0]	 =	
stdout____________________________________;	
	 for	 (int	 i	 =	 1;	 i	 <	 argc;	 i++)	 {	
	 	 	 files[i]	 =	 fileno(fopen(argv[i],	 "w"));	
	 }	
	 while	 (1)	 {	
	 	 	 int	 error	 =	 read(stdin,	 buffer,	 1024	
___________________________);	
	 	 	 if	 (error	 <=	 0)	 break;	
	 	 	 for	 (int	 i	 =	 0;	 i	 <	 argc;	 i++)	 {	
	 	 	 	 	 write(files[i],	 buffer,	 error	
____________________________________);	
	 	 	 }	
	 }	
	 return	 0;	
}	

ii) (2 points) What does this program do if we cannot open one of the destination
files?
The program will silently ignore the error.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 12/14

iii) (2 points) In our first for loop, what would change if we started the for loop at

i = 0?
We would overwrite the application binary(!) and not print the output to
stdout.

iv) (2 points) What does this program do if the same destination file appears more
than once on the command line?
The correct output would appear in the file because each file descriptor has
its own position in the file.

b. (6 points) Pintos questions.
i) (3 points) Will the Pintos implementation of semaphores work on a

multiprocessor machine? Explain why they will work, or explain how you
could fix them.
No. Disabling interrupts only works with a single processor. We would need
to use atomic instructions like CAS.

ii) (3 points) In Pintos, how does the thread_current() function find the
address of the currently running thread’s TCB? (If you did not have access to
this function, how could you get the address of the current thread’s TCB?)
Just take the stack pointer and page-align it (mask off the last 12 bits). We
have mentioned several times in class that the thread struct shares a page
with the stack.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 13/14

5. (12 points total) Resource Allocation.

Suppose we have the following snapshot of a system with five processes (P1, P2, P3,
P4, P5) and 4 resources (R1, R2, R3, R4). There are no outstanding queued
unsatisfied requests.

 Current Allocation Max Need Still Needs

Process R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 2 0 0 1 2 0 0 0 0
P2 1 0 0 0 1 7 5 0 0 7 5 0
P3 1 3 5 4 2 3 5 6 1 0 0 2
P4 0 6 3 2 0 6 5 2 0 0 2 0
P5 0 0 1 4 0 6 5 6 0 6 4 2

 Currently Available Resources

R1 R2 R3 R4
1 5 2 0

a. (8 points) Is this system currently in a SAFE, UNSAFE, or deadlocked state?

Explain your answer and if possible, give an execution order.

The system is in a SAFE state – P1 can run at any time, so a possible execution
path is P1, P4, P2, P3, P5. We accepted any valid execution order.

CS 162 Spring 2016 Midterm Exam #1 March 9, 2016
Solutions NAME: _______________________________________

 Page 14/14

b. (4 points) If a request from process P2 arrives for (0, 4, 2, 0), can the request be
granted immediately? Explain your answer and if possible, give an execution
order.

Yes. P1 can run at any time, one possible execution path is P1, P3, P4, P5, P2.
We accepted any valid execution order

