University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science

CS 162 Spring 2011

FIRST MIDTERM EXAMINATION Wednesday, March 9, 2011

INSTRUCTIONS—READ THEM NOW! This examination is CLOSED BOOK/CLOSED NOTES. There is no need for calculations, and so you will not require a calculator, Palm Pilot, laptop computer, or other calculation aid. Please put them away. You MAY use one 8.5" by 11" double-sided crib sheet, as densely packed with notes, formulas, and diagrams as you wish. The examination has been designed for 80 minutes/80 points (1 point = 1 minute, so pace yourself accordingly). All work should be done on the attached pages.

In general, if something is unclear, write down your assumptions as part of your answer. If your assumptions are reasonable, we will endeavor to grade the question based on them. If necessary, of course, you may raise your hand, and a TA or the instructor will come to you. Please try not to disturb the students taking the examination around you.

We will post solutions to the examination as soon as possible, and will grade the examination as soon as practical, usually within a week. Requests for regrades should be submitted IN WRITING, explaining why you believe your answer was incorrectly graded, within ONE WEEK of the return of the examination in class. We try to be fair, and do realize that mistakes can be made during the regarding process. However, we are not sympathetic to arguments of the form "I got half the problem right, why did I get a quarter of the points?"

(Signature)	SID:
(Name—Please Print!)	Discussion Section (Day/Time):

QUESTION	POINTS ASSIGNED	POINTS OBTAINED
1	10	
2	15	
3	15	
4	20	
5	20	
6	20	
TOTAL	90	

Stu	dent Name: SID:		
For	restion 1. Miscellaneous (10 points) reach of the following statements, indicate whether the statement is True or Falort explanation of your selection (2 points each).	se, and provide a	ı very
a.	Several threads can share the same address space. Rationale:	T	F
b.	Changing the order of semaphores' operations in a program does not matter. Rationale:	T	F
c.	Paging leads to external fragmentation. Rationale:	T	F
d.	FIFO scheduling policy achieves lowest average response time for equal size job Rationale:	s. T	F
e.	LRU exhibits the Belady anomaly. Rationale:	Т	F

Student Name:	_ SID:
Question 2. Deadlock (15 points)	
Consider a system with four processes P1, P2, P3, and P4, and Each resource has two instances. Furthermore: - P1 allocates an instance of R2, and requests an instance of R1 and doesn't need any P3 allocates an instance of R1 and requires an instance P4 allocates an instance of R2, and doesn't need any	nce of R1; y other resource; nce of R2;
5 points each question)	
(a) Draw the resource allocation graph.	
b) Is there a cycle in the graph? If yes name it.	
b) is there a cycle in the graph. If yes hame it.	
(c) Is the system in deadlock? If yes, explain why. If not, giv which every process completes.	e a possible sequence of executions after

Student	Name:	SID:	
Questio	on 3. Synchronization (15 points)		
	Queue_		
U	Queue_		
	Oueue		

Consider a set of queues as shown in the above figure, and the following code that moves an item from a queue (denoted "source") to another queue (denoted "destination"). Each queue can be both a source and a destination.

```
void AtomicMove (Queue *source, Queue *destination) {
    Item thing; /* thing being transferred */
    if (source == destination) {
        return; // same queue; nothing to move
    }
    source->lock.Acquire();
    destination->lock.Acquire();
    thing = source->Dequeue();
    if (thing != NULL) {
        destination->Enqueue(thing);
    }
    destination->lock.Release();
    source->lock.Release();
}
```

Assume there are *multiple* threads that call AtomicMove() concurrently. (5 points each question)

(a) Give an example involving no more than three queues illustrating a scenario in which AtomicMove() does not work correctly.

Student Name:	SID:	

(b) Modify AtomicMove() to work correctly.

(c) Assume now that a queue can be either a source or a destination, but not both. Is AtomicMove() working correctly in this case? Use no more than two sentences to explain why, or why not. If not, give a simple example illustrating a scenario in which AtomicMove() does not work correctly.

Stude	Student Name:								SID:							
Ques	tion 4	. Sched	luling	(20 po	ints)											
	ider th	ree thr	eads th	at arri	ve at th	ne sam	e time	and th	ey are	enquei	ied in	the rea	dy que	eue in t	he ord	er
T1 ca iterat with waitin	alls yie ion loc T3, i.e ng, T2	ld; as a pp, whi ., T2 ca (T3) is	a result ich eac annot s s place	t, T1 is h itera start the	loop, y placed tion tal e secon e waiti	d at the king th nd itera ng que	end or ree ting tion be sue; on	f the rene units efore Take	eady ques. At the T3 finis	ueue. The end shes the nishes	hreads of first e first i	T2 ar iteration	nd T3 b ion, T2 on, and	ooth ru synch vice v	n a two ronize ersa. V	o- s Vhile
sched writin	luling j ng "R"	policie if the	s (FCF thread	S and is run	U. On Round ning, ". or T3 to	Robir A" if tl	i). For ne thre	each u	init of the re	time, ii eady qu	ndicate ueue, a	the st	ate of t	the threa	ead by d is in	
threa	donly	stops 1	running	g when	n ption it call h colur	s yield	or wa	its to s	ynchro	nize w	ith and	other tl	hread.	What i	is the	
T1	R														<u> </u>	
T2	A															
T2 T3	A															
	(b) (6 points) Round Robin (time quantum = 2 units) When a thread is preempted it is moved at the end of the ready queue. What is average completion time?															
T1	R															
T2	A															
of FC	ČFS wi	th no p	reemp	tion. V	e two p When t g "R"	he sch	eduler	assign	s tasks	, alwa	ys assi	gn a ta	sk to P	1 befo	re	•

What is the average completion time?

Student Name:	SID:	

Question 5. Paging (20 points) Consider a memory architecture using two-level paging for address translation. The format of the virtual address, physical address, and PTE (page table entry) are bellow:

	9 bits	9 bits	14 bits
Virtual address:	virtual page#	virtual page #	offset

10 bits 14 bits

Physical address: physical page # offset

PTE: physical page # perm. bits

(4 points each question)

- (a) What is the size of a page?
- (b) What is the size of the maximum physical memory?
- (c) What is the total memory needed for storing all page tables of a process that uses the entire physical memory?

(d) Assume a process that is using 512KB of physical memory. What is the minimum number of page tables used by this process? What is the maximum number of page tables this process might use?

(e) Assume that instead of a two-level paging we use an inverted table for address translation. How many entries are in the inverted table of a process using 512KB of physical memory?

Question 6. Caches (20 points) A tiny system has 1-byte addresses and a 2-way associative cache with four entries. Each block in the cache holds **two** bytes. The cache controller uses the LRU policy for evicting from cache when both rows with the same "index" are full.

(a) (4 points) Use the figure below to indicate the number of bits in each field.

_ bits	_ bits	_ bits	
cache tag	index	byte select	l

(b) (6 points) Assume the following access sequence to the memory: 0xff, 0x22, 0x27, 0x24, 0x27, 0xff, 0xf0, 0x24, 0x27, 0x22. Fill in the following table with the addresses whose content is in the cache. Initially assume the cache is empty. The first entry (i.e., the one corresponding to address 0xff) is filled for you.

		0xff	0x22	0x27	0x24	0x27	0xff	0xf0	0x24	0x27	0x22
Set 1	Index: 0										
	Index: 1	0xfe, 0xff									
Set 2	Index: 0										
	Index: 1										

(c) (4 points) How many cache misses did the access sequence at point (b) cause? What is the hit rate?

(d) (3 points) How many compulsory misses (i.e., misses which could never be avoided) did the access pattern at point (b) cause?

(e) (3 points) Assuming the cache access time is 10ns, and that the miss time is 100ns (this includes the time to check the cache), what is the average access time assuming the access pattern at point (b)?

- Scratch page -