
CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 1/12

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Fall 2017 Ion Stoica

Third Midterm Exam
November 29, 2017

CS162 Operating Systems

Your Name:

SID:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 20

2 16

3 12

4 16

5 12

6 24

TOTAL 100

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 2/12

P1 (20 points total) True/False and Why? CIRCLE YOUR ANSWER. For each question: 1
point for true/false correct, 1 point for explanation. An explanation cannot exceed 2 sentences.

a) As the size of the read operations decreases the effective bandwidth of an SSD in bits/sec
also decreases.

TRUE FALSE
Why?

True. There is a fixed overhead for each read operation so the smaller the read the less the
effective bandwidth. Recall EffectiveBandwidth = num_ops / (fixed_overhead + num_ops /
bandwidth).

b) File permissions are stored in the File Allocation Table in FAT32 filesystems.

TRUE FALSE
Why?

False. FAT only stores block numbers.

c) Finger tables are not necessary for the correctness of Chord (e.g. correct lookup of keys).
TRUE FALSE

Why?
True. They are an efficiency measure, but Chord can still lookup keys without it (logN vs. N).

d) According to Little's Law, the number of customers/jobs in the system depends on the
type of arrival distribution.

TRUE FALSE
Why?

False. The Little Law only depends on the average number of arrivals, and not on the particular
distribution.

e) On a remote procedure call, the client code must first marshal the arguments before
passing them into the RPC, which then passes them to a client stub that handles sending
them to the remote server.

TRUE FALSE
Why?

False. The client stub handles the marshaling of arguments.

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 3/12

f) Storing inodes in the same cylinder group as their underlying files improves performance
compared to storing them all in the outermost cylinders.

TRUE FALSE
Why?

True. It improves locality and thus reduces seek time.

g) According to the end-to-end principle presented in this class, there is sometimes a benefit

to implementing functionality at a lower layer.
TRUE FALSE

Why?
True. This can be true when it enhances performance and it doesn’t burden applications that
don’t benefit/need that performance.

h) “Best effort” packet delivery ensures that packets are delivered reliably and in-order.
TRUE FALSE

Why?
False. “Best effort” makes no reliability guarantees, and is implemented in L3.

i) Log structured file systems generally perform much better on random writes than random
reads.

TRUE FALSE
Why?

True. Writes are just appended, while it can take some time to read through the log to assemble a
final image of the file, although caching can ameliorate this issue.

j) NTFS stores file data through fixed-size blocks organized into lists or trees in records in
the Master File Table.

TRUE FALSE
Why?

False. NTFS uses variable-length extents to store file data.

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 4/12

P2 (16 points) Short Answers:

a) (8 points) [Anime Party Synchronization] A party has two types of attendees: Rem fans and
Emilia fans, and neither really likes each other. Each can try to enter, or can exit, at any time.
However, any fan first checks in with a bouncer (your monitor synchronization) before entering
the party. If an absolute majority of one type of fan exists inside the party, then the bouncer
allows all majority fans in. Minority fans are only allowed to enter if they would not create a tie
or flip the majority in the party, otherwise they are blocked outside. Example: if there were 5
Rem fans in the party and they held majority, only up to 4 Emilia fans would be allowed in and
the rest would block, while any number of Rem fans would be allowed in.

Additional Notes:

• Blocked and exited fans outside the party do not count for determining majorities. In a tie
there is no majority.

• Fans should never hang (e.g. as soon as the minority ties or become the majority in the
party, their blocked friends should enter).

• Fans cannot be blocked from exiting or forced to exit.

Implement this as a synchronization monitor using the following struct definition. Do not modify
the struct or attempt to add lines of code beyond that provided. Inefficiency is acceptable, the
priority is correctness:

typedef	struct	{	
	 struct	lock	lock;	//lock.acquire(),	lock.release()	
	 struct	cv	rem_cv;	//cv.wait(&lock),	cv.signal(),	cv.broadcast()	
	 struct	cv	emilia_cv;	
	 int	rem_fans;	
	 int	emilia_fans;	
}	party_monitor;		
	
rem_fan_enter(party_monitor*	re)	{	
	 re->lock.acquire();	
	 while(re->rem_fans	==	re->emilia_fans	-	1)	
	 	 re->rem_cv.wait(&re->lock);	
	 re->rem_fans++;	
	 re->lock.release();	
}	
rem_fan_exit(party_monitor*	re)	{	
	 re->lock.acquire();	
	 re->rem_fans--;	
	 re->emilia_cv.broadcast();	
	 re->lock.release()	
}

	

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 5/12

emilia_fan_enter(party_monitor*	re)	{	
	 re->lock.acquire();	
	 while(re->emilia_fans	==	re->rem_fans	-	1)	
	 	 re->emilia_cv.wait(&re->lock);	
	 re->emilia_fans++;	
	 re->lock.release();	
}	
emilia_fan_exit(party_monitor*	re)	{	
	 re->lock.acquire();	
	 re->emilia_fans--;	
	 re->rem_cv.broadcast();	
	 re->lock.release()	
}

b) (8 points) [Supply & Demand Paging] Fill in the table below assuming the LRU and Clock
page replacement policies. There are 4 frames of physical memory. The left column indicates the
frame number, and each entry to the right contains the page that resides in the corresponding
physical frame, after each memory reference (we have already filled in the row corresponding to
accessing A). For clock, tick the hand first before checking the use bit on a fault. For readability
purposes, only fill in the table entries that have changed and leave unchanged entries blank.

 A B C D E B A D B C

LRU P1 A E C

P2 B

P3 C A

P4 D

Clock P1 A E

P2 B

P3 C A

P4 D C

	

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 6/12

P3 (12 points) Filesystem Magica: Madoka Kaname is building a filesystem for Project 3. She
implements a thread-safe write-back cache. She also implements extensible files and directories
using her modified inode definition. For thread safety, she makes sure that a thread grabs a
corresponding per-inode lock when it extends a file, and when it reads or writes a directory.

Madoka decides to implement a move syscall, which moves a file from directory to directory:

move(inode	*dir1,	inode	*dir2,	char	*filename)	{
	lock_acquire(dir1->lock);
	lock_acquire(dir2->lock);		//	Assume	no	deadlocks.
	struct	dir_entry	entry;
	bool	exists	=	lookup(dir1,	filename,	&entry);
	if	(exists)	{
			block_sector_t	file_inode_sector	=	entry.sector;
			erase_directory_entry(dir1,	entry);		//	Writes	to	buffer	cache.
			add_directory_entry(dir2,	filename,	file_inode_sector);		//	Writes	to	
buffer	cache.
	}
	lock_release(dir2->lock);
	lock_release(dir1->lock);	
}

A	user	program:
//	Assume	all	syscalls	succeed
create(“/hello/world”,	12);
mv(“/hello/world”,	“/goodbye/world”);	//enters	move()	through	syscall
printf(“done!”);

a) (4 points) To test her filesystem’s reliability, Madoka runs the above user program and
pulls the power after seeing the “done!” message. She finds that neither /hello/ nor
/goodbye/ have her file! What happened? (1 sentence)

The filesystem crashed after the modified dir1 block was written back to disk, but before the
modified dir2 block was written back to disk.

b) (4 points) By modifying the move function, how can Madoka make sure that at least one
of the directories has a file named “world” after a crash? (1 sentence)

Add the directory entry to dir2 before erasing the directory entry from dir1, then flush the
modified dir2 block before modifying the dir1 block.

	

c) (4 points) By modifying the filesystem design, how can Madoka make sure that exactly
one of the directories has a file named “world” after a crash? (1 sentence)

Use a journaled filesystem and implement move as a transaction.
	

	

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 7/12

P4 (16 points) No Game No Commit: Consider the 2-phase commit protocol with a coordinator
C and 3 workers W1, W2, W3. Assume:

• C communicates with W1, W2, W3 in parallel
• C timeout latency is 1s
• latency for sending/receiving messages from C to W1-W3, and for logging messages at

W1-W3 are shown below (assume all other latencies are negligible):

 MSG Send/Receive

Latency (each direction)
Worker Logging
latency per MSG

W1 100ms 30ms

W2 200ms 20ms

W3 300ms 10ms

a) (4 points) What is the total amount of time taken for two-phase commit to complete
successfully (starting from C sending VOTE-REQUEST messages, and ending with C
receiving ACK messages from all workers)?

Each phase bottlenecked by the slowest message send/receive of 600ms + 10ms for logging.
Total for both phases = 2 * 610 = 1220ms

b) (4 points) Consider that in one particular execution of two-phase commit, W2 crashes
during commit phase, and comes back up immediately after master times out. Does the
operation still commit (circle YES or NO)? What is the latency for the execution of two-
phase commit (box final answer)?

YES NO
Yes. Prepare phase still takes 610ms. In commit phase, master timeout takes 1s, after which it re-
sends GLOBAL-COMMIT to W2 again, which logs and responds with an ACK. This takes an
additional 420 ms. So, total time taken is 2030ms.

c) (4 points) Consider that in another execution of two-phase commit, W1 crashes during
prepare phase, and comes back up immediately after master times out. Does the
operation still commit (circle YES or NO)? What is the latency for the execution of two-
phase commit (box final answer)?

YES NO
No. In prepare phase, master timeout takes 1s, after which it sends GLOBAL-ABORT message
to all workers. This takes an additional 610ms (bottlenecked by W3). So, total time taken is
1610ms.

d) (4 points) If C, W1, W2, W3 were guaranteed not to crash, can we replace the two phases
in 2PC with a single phase (circle YES or NO)? Why or why not (answer in a single
sentence)?

YES NO
No. You would still need two phases to check whether all of the workers agree to the proposed
transaction (prepare phase) and commit/abort accordingly (commit phase).

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 8/12

P5 (12 points) CS168 Except Not Multiple Choice: Consider a TCP connection, such that:
• the sender sends 1800 bytes worth of data;
• the receiver’s initial advertised window is 1000 bytes;
• the maximum packet size is 500 bytes;
• the receiving process consumes each packet p that contains in-sequence bytes right after

the ack for p is sent (by the receiver), and before the receiver receives the next packet;
note that if packet p does not contain in-sequence bytes (i.e., the previous packet has not
been received) that receiving process does not consume p.

• the sender can send all data before the first ack is received, of course, modulo the size of
the advertised window and of the sender window.

a) (4 points) Assume no packets are lost. Draw the time diagram of the packet delivery. For

each packet indicates the bytes sent in that packet, and for each ack packet show the
sequence number of the next expected byte, and the advertised window (denoted
advWin).

b) (4 points) Assume now the 1st packet is lost and none of the other packets are lost
afterwards. Draw the time diagram of the packet delivery. For each packet indicates the
bytes sent in that packet, and for each ack packet show the sequence number of the next
expected byte, and the advertised window.

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 9/12

	
c) (4 points) Assume now that the advertised window is 1200 bytes, and the 1st and 2nd

packets are received by the receiver in reverse order, i.e., the receiver gets 2nd packet
before the 1st packet. No packets are lost, and no other packets or acks are reordered.
Draw the time diagram of the packet delivery. For each packet indicates the bytes sent in
that packet, and for each ack packet show the sequence number of the next expected byte,
and the advertised window.

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 10/12

P6 (24 points) Sword Art I/O: You're excited to download the 1st episode of Sword Art Online
(SAO) from Netflix. Your client (browser) connects with the master server in the nearest Netflix
datacenter, which coordinates many worker servers. The workers store an unreplicated
distributed key-value store mapping "TV Show Title" -> video file.

a) [Queuing & Networking] Assume all network links have 80 gigabits/second (10 gigabytes/s)

of bandwidth. The latency between you and any server in the datacenter is 100 ms, while the
latency between servers in the datacenter is 10 ms. Assume that all requests and responses
except for the video itself are negligible (~0 bytes) in size, and all arrivals & service times
are memoryless. The video is 1 gigabyte in size. Assume in parts i), ii), & iii) that the master
cached the video (no communication with workers).

i. (2 points) What is the network round trip time (from your sending the request to
getting the video), ignoring queueing and processing delays?

(0.1s + 0) + (0.1s + 1GB / (10 GBps)) = 300ms

ii. (3 points) Assume the master has a service time of 10ms and 25 requests arrive per
second. Assuming steady state, what is the utilization, time spent in the queue, and
the length of the master’s queue?

u 0.25

Tq 10/3 ms

Lq 1/12 jobs

iii. (3 points) SAO turns out to be very popular, and the arrival rate jumps to 162 requests

per second (service time is still 10ms). Assuming steady state, what is the utilization,
time spent in queue, and length of the master’s queue?

u 1

Tq unbounded

Lq unbounded

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 11/12

iv. Assume the master no longer caches the video and you query the distributed key-
value store iteratively.

α) (1 point) What is the network round trip time, ignoring processing &
queuing delays?

(0.1s + 0) + (0.1s + 0) + (0.1s + 0) + (0.1s + 0.1s) = 500ms

β) (2 points) Consider the utilization, queuing time, & service time in part ii):
uold, Tq, Tser. In the master, express the new utilization unew in terms of uold and
compute the new queuing time Tnew in terms of Tq and/or Tser.

unew uold (aka 0.25)

Tnew Tq (aka 3.333ms)

v. Assume the master no longer caches the video and you query the distributed key-

value store recursively.
α) (1 point) What is the network round trip time, ignoring processing &
queuing delays?

(0.1s + 0) + (0.01s + 0) + (0.01s + 0.1s) + (0.1s + 0.1s) = 420ms

β) (2 points) Consider the utilization, queuing time, & service time in part ii):
uold, Tq, Tser. In the master, express the new utilization unew in terms of uold and
compute the new queuing time Tnew in terms of Tq and/or Tser. Assume it takes
the same time to service either a client or a worker.

unew 2*uold (aka 0.5)

Tnew Tser (aka 10ms)

vi. (2 points) You want to download your SAO episode as fast as possible. Do you prefer

recursive or iterative queries? Explain briefly in 1 sentence.
You prefer recursive since it is faster (latency dominates)

vii. (2 points) Suppose you now want to download all 50 episodes of SAO in a batch as
fast as possible rather than just 1 episode. Do you prefer recursive or iterative
queries? Explain briefly in 1 sentence.

You prefer iterative since it is faster (bandwidth dominates, avoids copying value)
	

CS 162 Fall 2017, 3rd Midterm Exam November 29, 2017

 Page 12/12

b) [Disk Latency] Within a single worker server, a disk has the following characteristics:
• 1ms controller delay
• 1ms seek time
• 30000 rpm rotation speed
• 1 megabyte/s transfer rate
• 10 kilobyte sector size

i. (3 points) Compute the average rotation time, transfer time, and average total time
to read 1 sector. Ignore queuing delay.

Rotation 1ms

Transfer 10 KB / (1MB/s) = 10ms

Total 1 + 1 + 1 + 10 = 13ms

	
ii. Schedule the I/O operations using the following disk scheduling algorithms. The

arm is initially over cylinder 35. Assume SCAN and C-SCAN begin by traversing
ascending cylinder numbers, and ignore rotational delay. List the operations
scheduling order from left to right.

	
 A B C D E F

Cylinder # 10 21 40 64 75 90

α) (1 point) Shortest Seek Time First:
C, B, A, D, E, F

β) (1 point) SCAN (Elevator):
C, D, E, F, B, A

γ) (1 point) C-SCAN:
C, D, E, F, A, B

