
CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 1/10

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Fall 2017 Ion Stoica

Second Midterm Exam
October 23, 2017

CS162 Operating Systems

Your Name:

Kazuto Kirigaya (because Kirito is always right)

SID:

13371337

TA Name:

Asuna Yuuki

Discussion Section
Time:

7-8pm, Funday

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80
minutes to answer as many questions as possible. The number in parentheses at the
beginning of each question indicates the number of points for that question. You should
read all of the questions before starting the exam, as some of the questions are
substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible.
If there is something in a question that you believe is open to interpretation, then please ask
us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 24

2 18

3 18

4 20

5 20

TOTAL 100

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 2/10

P1 (24 points total) True/False and Why? CIRCLE YOUR ANSWER. For each
question: 1 point for true/false correct, 2 points for explanation. An explanation cannot
exceed 2 sentences.

a) Adding a TLB will always improve memory access latency.
TRUE FALSE

Why?
Any workload that doesn’t visit the same page twice within the TLB’s capacity (or less if
N-way associative) will make the workload perform worse than not having a TLB. We
also accepted answers explaining on single TLB misses, the added overhead of the TLB
check would result in worse latency.

b) Memory protection can be implemented without using an address translation

mechanism.
TRUE FALSE

Why?
Each process can be associated a BaseAddr and a LimitAddr, and the CPU or OS can
check every access of the process whether it falls between BaseAddr and LimitAddr (see
slide 15 in lecture 12).

c) Segmentation does not change the value of the bits in the offset field of the virtual

address when translating to a physical address.
TRUE FALSE

Why?
With segmentation we add base to virtual address, which can modify the offset (unlike in
paging).

d) Two distinct page tables can have the same page table entry despite existing in
separate processes.

TRUE FALSE
Why?

This happens when processes share pages with each other.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 3/10

e) Priority scheduling can lead to starvation.
TRUE FALSE

Why?
Yes, if there are enough high priority threads, the lower priority threads will be denied
the service for ever.

f) Under demand paging, if we think of memory as a cache for disk, conflict misses

are not possible.
TRUE FALSE

Why?
Any page can be placed anywhere in memory, making the “cache” fully-associative.

g) Each syscall has its own unique entry in the interrupt vector in Pintos.
TRUE FALSE

Why?
All syscalls share the single interrupt 0x30, and are distinguished in the syscall handler
by the syscall number passed as an argument.

h) Priority donation is a method of preventing deadlocks.
TRUE FALSE

Why?
Priority donation prevents priority inversion, not deadlocks (it does not prevent circular
wait).

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 4/10

P2 (18 points) Synch Art Online II – Lawyer's Rosario: In the dining lawyers problem,
four lawyers sit around a table, with IDs A-D from left to right. There is a chopstick
between each lawyer, so that chopstick a is to the left of lawyer A, and so on. The
chopsticks loop around (e.g. the right chopstick of lawyer D is chopstick a). Each lawyer
thinks and then eats, repeatedly. To eat, each lawyer needs two chopsticks. Each lawyer
can only reach the chopstick immediately to their left and right (e.g., lawyer A needs
chopsticks a and b).

Total resources

Chopstick a Chopstick b Chopstick c Chopstick d

1 1 1 1

Lawyer ID Current chopstick allocation Maximum chopstick allocation

a b c d a b c d

A 1 0 0 0 1 1 0 0

B 0 1 0 0 0 1 1 0

C 0 0 1 0 0 0 1 1

D 0 0 0 1 1 0 0 1

a) (5 points) Fill out the maximum chopstick allocation table (aka only the right,

shaded half of the table). More precisely, for every lawyer indicate the chopsticks
it needs to acquire in order to eat.

b) (5 points) Fill out the current chopstick allocation table (the left half of the table)

so that we are in an unsafe state, that is, a state in which none of the lawyers can
proceed, so all are starving. In addition, give a sequence of requests that will lead
to the unsafe state you filled in in the table. Each request should be a pair of a
lawyer and the requested chopstick.

Lawyer A requests chopstick a -> Lawyer B requests chopstick b -> Lawyer C requests
chopstick c -> Lawyer D requests chopstick d (aka everyone requests left, then right)

ALTERNATIVELY: Lawyer D requests chopstick a. Lawyer C requests chopstick d.
Lawyer B requests chopstick c. Lawyer A requests chopstick b. (aka right, then left)

The table is filled in for the left->right solution, the right->left solution for the table
would be valid as well.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 5/10

c) (5 points) Consider the order of requests that led to the unsafe state at point (b),
but now use the Banker algorithm to avoid getting into the unsafe state. Give the
order in which the lawyers will finish eating.

C → B → A → D
Alternatively:
B → C → D → A

d) (3 points) Suppose we implemented each lawyer as a thread and we use a critical
section for every chopstick (i.e., a chopstick can be picked or dropped only within
its critical section). Suppose we do not use the banker’s algorithm, and instead
detect the deadlock and break it by abruptly “killing” a thread (lawyer). However,
to our surprise this doesn’t break the deadlock. What happened?

Chopstick acquisition is most likely implemented with a synchronization primitive.
Shooting one of the lawyers will leave the system in an inconsistent state. For example, if
chopsticks are implemented with semaphores, then the killed lawyer can’t up the
semaphore that another lawyer is waiting on.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 6/10

P3 (18 points) Address Translation for RAM (& Rem): Suppose we have split our 64-
bit Virtual Address Space as follows:

a) (2 points) How big is a page in this system?

We have 12 offset bits, so a page can have 2^12 = 4K bytes.

b) (4 points) Assume that the page tables are divided into page-sized chunks (so that
they can be paged to disk). How many PTEs are fit in a page table? What is the
value of X?

A PTE should contain one address, so its length is 8 bytes (64 bits). A page table has
2^12/2^3 = 2^9= 512 entries.
We also gave full points to the following alternative answer:
If the PTE was assumed to be 7 bytes (as PPN = 52 bits) then X=2^12/7=10 (rounded up
from 9.19), and the corresponding number of PTEs = 2^10=1024.

c) (3 points) What is the size of the segment index (Y)? How many segments can the
system have?

If answer to part b was X=9, then Y=64-12-4*9=16 bits.
number of segments=2^Y (2^16 = 64K)
If answer to part b was X=10, then Y=64-12-4*10=12
number of segments=2^Y = 2^12 = 4KB

a) (4 points) What would be the format of a PTE (page table entry)? Show the
format of including bits required to support the clock algorithm for page
replacement and copy-on-write optimizations, i.e., a dirty bit, a valid bit, and used
bit. (Assume: 64-bit Physical Address space)

We have 12-bit offset, so in a 64-bit physical address space, we will have
2^64/2^12=2^52 pages. Hence, we will need 52 (64-12) bits to index one of those pages.

b) (5 points) If a user’s heap segment is completely full, how much space is taken up
by the page tables for this segment? (It is fine if you just provide the numerical
expression without calculating the final result.)?

Number of pages taken by the page table across different levels
=1 (top-level) + 2^X (second-level) + 2^X*2^X (third-level) + 2^X*2^X*2^X (fourth-
level)
So, the page table for the heap segment in this case will occupy (1 + 2^X + 2^X*2^X +
2^X*2^X*2^X) pages)
And the size of the heap segment will be
= (number of pages in the corresponding page table) * size of a page
= (1 + 2^X + 2^X*2^X + 2^X*2^X*2^X) * 2^12 bytes

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 7/10

P4 (20 points total) Caching – Bad Day at Work: Your company designs caches for
servers with 32-bit addresses. You are designing a 1KB cache with 32B blocks, and your
hardware designer suggests a 64-way set associative cache.

a) (4 points) Why would 64-way set associativity not make sense for the cache?

The total number of cache blocks is 1KB/32B = 32. Therefore it doesn’t make sense to
have a 64-way set associative cache, since #cache blocks < associativity. In fact, the
cache will already be fully associative if you have 32-way set associativity.

b) (4 points) You decide to design a fully associative cache instead, and have to
come up with a replacement algorithm. Given that the common use-case is
repeatedly iterating through arrays that are only slightly larger than the cache
capacity, which of LRU (Least Recently Used) or MRU (Most Recently Used)
policies yield higher hit rates and why? As the names implies MRU replaces the
entry that was accessed last. Answer in at most 2 sentences.

MRU; with LRU, we would keep evicting entries earlier in the array, resulting in cache
misses for repeated iterations. With MRU, we would evict entries later in the array,
leaving most of the earlier array entries in the cache, resulting in better hit rates for
repeated iterations.

c) (4 points) Unfortunately, the hardware engineer introduced a bug in the cache

where the cache tag comparison always yields a mismatch. How would this bug
impact (i) correctness of end-to-end memory lookups and (ii) effective access
time for memory lookups, regardless of correctness? Answer in at most 2
sentences.

The bug would not impact the correctness of end-to-end memory lookups, since tag
mismatches in the cache be corrected by lookups to the memory.

The bug would increase effective access time, since every access would result in a cache
miss.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 8/10

d) (4 points) Your hardware engineer fixes the bug in (c), but introduces another bug
where the cache only compares the first N-1 bits of the N-bit cache tag. How
would this bug impact (i) the correctness of end-to-end memory lookups and (ii)
effective access time for memory lookups, regardless of correctness? Answer in at
most 2 sentences.

The bug would result in an incorrect lookup for a requested address whose tag matches
N-1 bits but not all N bits with the tag corresponding to a cache entry.

The bug would reduce effective access time, since it is now twice as likely to find entries
in the cache due to partial (and potentially incorrect) tag matches.

e) (4 points) Your hardware engineer fixes the bug in (d) but quite unsurprisingly,
introduces yet another bug, where the cache randomly reads the valid bit of any
cache entry as 0 with probability p. In other words, if a cache entry is valid, the
cache will assume this entry is invalid with probability p. On the other hand, if the
cache entry is invalid, the cache will correctly assume it is invalid. The memory
access time is 40 ns, cache access time is 10ns, and probability of finding an entry
in cache (before reading valid bit) is 0.9. If effective access time (after reading the
valid bit) is 41 ns, what is the value of probability p?

Cache hit rate = Probability of finding the entry in the cache * Probability of reading
valid bit as 1 = 0.9 * (1-p) = 0.9 - 0.9p

Cache miss rate = 1 - Cache hit rate = 0.1 + 0.9p

Effective Access Time = (0.9 - 0.9p) * 10 + (0.1 + 0.9p) * (10 + 40) = 41
=> p = 0.75

f) (0 points) Would you fire your hardware engineer?

Think of their family. Have mercy.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 9/10

P5 (20 points) Real-Time Exam Scheduling: Assume 3 threads with period (P) and
computation time per period (C) defined as below:

 Period (P) Computation Time (C)

T1 5 2

T2 6 2

T3 3 1

Assume all threads arrive at time 0.

a) (5 points) Fill out the table below according to the the Earliest Deadline First
scheduling algorithm. As the name implies, EDF schedules the ready thread with
the earliest deadline, where a thread is ready, if the requested computation, C, in
the current period has not been satisfied yet. Fill out a box with an ‘X’ if the
thread of that row is running at the time of the column. If two threads have the
same deadline, break ties in numerical order i.e., T1 takes precedence before T2.
A time slice is one time unit (the table below shows the first 15 time slices).
Threads can only be preempted at time slice boundaries.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 X X X X X X

T2 X X X X

T3 X X X X X

b) (1 point) Were any of the deadlines missed? If so, give the thread(s) and time
period(s) during which the deadline was not met.

None were missed.

CS 162 Fall 2017, 2nd Midterm Exam October 23, 2017

 Page 10/10

c) (5 points) Now consider Rate Monotonic (RM), another real-time scheduler
which always schedules the thread with the highest ratio C/P. In other words RM
is a fixed priority scheduler where the priority of a thread is C/P, and highest
priority thread are scheduled first, i.e., T1 is scheduled before T2 if C1/P1 >
C2/P2. Given the RM scheduler, fill in the table below assuming the same
threads as in (a). Ties are again broken by the thread number with the lower
number running first, and threads can be preempted at the time slice boundaries.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 X X X X X X

T2 X X X X X X

T3 X X X

d) (1 point) Were any of the deadlines in the previous part missed? If so, give the
thread(s) and time period(s) during which the deadline was not met.

Yes. The deadlines of T3 were missed during every time period.

e) (5 points) Now consider Round-Robin (RR), where each thread is scheduled for a
time slices in a round-robin fashion, T1, T2, T3, T1, T2, … If a thread is not
ready (i.e., its request in a time period has been already satisfied), the thread is
simply skipped and the next time slice is allocated to the next ready thread. Fill in
the table below assuming the same threads as in (a).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 X X X X X

T2 X X X X X

T3 X X X X X

f) (1 point) Were any of the deadlines in the previous part missed? If so, give the

thread(s) and time period(s) during which the deadline was not met.
T1 misses its 3rd period deadline in the time interval [11, 15].

g) (2 points) Assume the three tasks at A are running forever. Does EDF guarantee
that all the deadlines will be always met? Why, or why not? No more than 2
sentences.

No. Consider time 3*6*5 = 90. By time 90 we need to schedule T1 18 times so we need
2*18 = 36 time slices, T2 15 times so we need 30 times slices, and T3 30 times so we
need 30 time slices. Thus, to meet all their deadlines the threads need to run for a total of
36+30+30 times slices during 90 time slices, which is impossible.

