
 Page 1/16

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Fall 2016 Anthony D. Joseph

Midterm Exam #1 Solutions
September 28, 2016

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 21

2 11

3 19

4 22

5 27

TOTAL 100

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 2/16

1. (21 points total) True/False and Why?
a. (8 points) True/False and Why? CIRCLE YOUR ANSWER.

i) When a user program performs a system call, it must first put the system call
arguments onto the kernel stack and then run a special instruction to switch to
kernel mode.

TRUE FALSE
Why?
FALSE. Arguments are put on the thread’s stack, not kernel stack. The
correct answer was worth 1 point and the justification was worth an
additional 1 point.

ii) On a system with a single processor core without hyperthreading, you can
speed up a single-threaded program by utilizing multiple threads.

TRUE FALSE
Why?
TRUE. Hypertrhreading enables the overlap of I/O and computation. The
correct answer was worth 1 points and the justification was worth an
additional 1 point.

iii) When a user program successfully calls execv(), its process is replaced with

a new program. Everything about the old process is destroyed, including all of
the CPU registers, program counter, stack, heap, background threads, file
descriptors, and virtual address space.

TRUE FALSE

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 3/16

Why?
FALSE. File descriptors are not destroyed by execv(). The correct
answer was worth 1 points and the justification was worth an additional 1
point.

iv) The only way a user thread can transfer control to kernel mode is through
syscalls, exceptions, and interrupts.

TRUE FALSE
Why?
TRUE. For security, threads can only transfer to kernel mode through
voluntary syscalls, and involuntary exceptions and interrupts. The correct
answer was worth 1 points and the justification was worth an additional 1
point.

b. (13 points) Short answer.

i) (4 points) Briefly, in two to three sentences, explain how an Operating System
kernel uses dual mode operation to prevent user programs from overwriting
kernel data structures.
Dual mode operation combined with address translation prevents user
programs from overwriting kernel data structures by limiting the operations
that user programs can perform. In particular, they cannot execute the
privileged instructions that change address translation..

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 4/16

ii) (3 points) Briefly, in two to three sentences, explain the purpose of the while
loop in the context of Mesa-style condition variables.
With Mesa-style condition variables, the signaler simply places the signaled
thread on the ready queue. Since another thread could run before the signaled
thread and could change the condition that caused the signaled thread to
wait, the signaled thread must check the condition using a while loop.

iii) (4 points) Briefly, in two to three sentences, explain the problems with the
Therac-25 – be specific but brief in your answer.
Software errors caused the deaths and injuries of several patients. There were
a series of race conditions on shared variables and poor software design that
lead to the machine’s malfunction under certain conditions.

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 5/16

iv) (2 points) In a typical OS, one way that a thread can transition from the

‘running’ state to the ‘waiting/blocked’ state is to wait on acquiring a lock.
Other than calling sleep or using semaphores or monitors, what are TWO
other different types of ways that a thread can transition from the ‘running’
state to the ‘waiting/blocked’ state?
By making an I/O call, or calling wait() on a child process

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 6/16

2. (11 points total) C Programming.
Consider the following C program:
int thread_count = 0;

void *thread_start(void *arg) {
 thread_count++;
 if (thread_count == 3) {
 char *argv[] = {"/bin/ls", NULL};
 execv(*argv, argv);
 }
 printf("Thread: %d\n", thread_count);
 return NULL;
}

int main(int argc, char *argv[]) {
 int i;
 for (i = 0; i < 10; i++) {
 pthread_t *thread = malloc(sizeof(pthread_t));
 pthread_create(thread, NULL, &thread_start, NULL);
 pthread_join(*thread, NULL);
 }
 return 0;
}

a. (6 points) When you run the program, what will be the output (assume that all

system calls succeed)?
The key part of this question is that exec will replace the current process, so no
more threads will be created. The output will be:
Thread: 1
Thread: 2
(contents of current directory)

b. (5 points) If we removed the line pthread_join(*thread, NULL), could the

output change? If so, explicitly describe the way(s) it might differ.
Because the threads are created but aren’t waited for, they will execute in a non-
deterministic order. So, we could get 0 or more printings of:
Thread: {1…10}
 (contents of current directory zero or one times)

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 7/16

3. (19 points total) Finite Synchronized Queue using Monitors.
In lecture we implemented an Infinite Synchronized Queue using a monitor. In this
exam question you will implement a Finite Synchronized Queue (FSQ) using a
monitor. The FSQ has Last-In, First-Out semantics (like a stack), a fixed maximum
capacity and supports three operations: CreateQueue(), AddToQueue(), and
RemoveFromQueue().
a. (6 points) What are the correctness constraints for the Finite Synchronized Queue?

1. If the queue is at capacity (full), then AddToQueue() must wait

2. If the queue is empty, then RemoveFromQueue() must wait

3. Only one thread may manipulate the queue at a time

Each element of the FSQ is a node:
typedef struct {
 int data;
 node *next;
} Node;

b. (3 points) Modify the FSQ struct to support a Finite Synchronized Queue.

You may assume that you have struct types for the components of a monitor.
typedef struct {
 Node *head; /* pointer to head of queue */
 int length; /* number of nodes in queue */
 int capacity; /* max size of queue */
 Lock lock;
 Condition dataAvailable;
 Condition spaceAvailable;

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 8/16

} FSQ;

We have implemented the CreateQueue(int size) function for you. You may
assume that the head, length, capacity, and monitor components are initialized.

c. (5 points) Implement the AddToQueue() function. Feel free to use pseudocode for

monitor operations.
void AddToQueue(FSQ *queue, Node *data) {
 LockAcquire(&queue-­‐>lock);
 while(queue-­‐>length == queue-­‐>capacity)
 wait(&queue-­‐>spaceAvailable, &queue-­‐>lock);
 data-­‐>next = queue-­‐>head;
 queue-­‐>head = data;
 queue-­‐>length++;
 signal(&queue-­‐>dataAvailable);
 LockRelease(&queue-­‐>lock);

}

d. (5 points) Implement the RemoveFromQueue() function. Feel free to use

pseudocode for monitor operations.
Node *RemoveFromQueue(FSQ *queue) {
 Node *data;
 LockAcquire(&queue-­‐>lock);
 while(queue-­‐>length == 0)
 wait(&queue-­‐>dataAvailable, &queue-­‐>lock);
 data = queue-­‐>head;
 queue-­‐>head = data-­‐>next;
 signal(&queue-­‐>spaceAvailable);

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 9/16

 LockRelease(&queue-­‐>lock);
 return data;

}

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 10/16

4. (22 points total) PintOS questions
a. (3 points) What is the maximum number of threads you can create in a user process

in PintOS?
One; each process consists of a single thread

b. (4 points) How does PintOS preempt the currently running thread in order to
schedule a new thread to run, if the currently running thread never yields?
Timer interrupts occur on each tick which lets the kernel preempt a thread that
has been running too long.

c. (3 points) What is the purpose of the idle thread in PintOS? Note that simply saying
“the idle thread is the thread that runs when the system is idle” is not an
acceptable answer.
The idle thread is a placeholder thread so the kernel is always running some
thread which allows scheduling logic to be implemented easily OR allows
switch_threads() to still work when there is no thread to switch from.

d. (4 points) Briefly explain what happens when a timer interrupt occurs while
interrupts are disabled in PintOS.
When interrupts are disabled, timer interrupts will not trigger the corresponding
interrupt handler. Because of this, threads running with interrupts disabled
cannot be context switched. Thus, turning interrupts off allows us to create an
atomic section in our code.

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 11/16

e. (4 points) How does struct thread *switch_threads (struct thread
*cur, struct thread *next) work for a thread that has just been created?
Upon creation of the thread, the stack will be initialized with two dummy frames
to make it seem like it has just been context switched away from. This includes the
root frame for the function kernel_thread and the frame for
switch_threads.
The dummy frame for switch_threads includes space for the registers that are
normally saved on the stack when a context_switch is performed.
struct switch_threads_frame
 {
 uint32_t edi; /* 0: Saved %edi. */
 uint32_t esi; /* 4: Saved %esi. */
 uint32_t ebp; /* 8: Saved %ebp. */
 uint32_t ebx; /* 12: Saved %ebx. */
 void (*eip) (void); /* 16: Return address. */
 struct thread *cur; /* 20: switch_threads()'s
CUR argument. */
 struct thread *next; /* 24: switch_threads()'s
NEXT argument. */
 };

f. (4 points) Consider the following code for the thread_exit() function in PintOS:
void thread_exit (void) {
 ASSERT (!intr_context ());

#ifdef USERPROG
 process_exit ();
#endif

 /* Remove thread from all threads list, set our status to
 dying, and schedule another process. That process

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 12/16

 will destroy us when it calls
 thread_schedule_tail() */
 intr_disable ();
 list_remove (&thread_current()-­‐>allelem);
 thread_current ()-­‐>status = THREAD_DYING;
 schedule ();
 NOT_REACHED ();
}

Briefly explain what NOT_REACHED () means and why this happens.
NOT_REACHED() panics the kernel when it is called, so the code should never
reach that point. The reason why it should never reach that point is because
schedule() will eventually remove the dying thread and clean up its memory so
it can never be run again.

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 13/16

5. (27 points total) Santa Claus problem (from Operating Systems: Internals and Design
Principles)

Santa Claus sleeps in his shop and can only be woken up by either:

(1) all ten reindeer being back from their vacation or
(2) some of the elves having difficulty making toys.

The elves can only wake Santa up when 5 of them have a problem. While Santa is
helping the 5 elves with their problems, any other elf who needs to meet Santa must
wait till the other 5 elves have been tended to first.

If Santa wakes up to 5 elves and all ten reindeer, Santa decides that the elves must
wait and focuses on getting his sled ready. The last (tenth) reindeer to arrive must get
Santa while the others wait before being harnessed to the sled. You can assume that
there are only ten reindeer, but you cannot make assumptions on the number of elves.

Assume Santa can call these methods: prepareSleigh(), helpElves()
Reindeer call getHitched() and Elves call getHelp() – both getHitched()
and getHelp() are thread safe, and can be called outside of critical sections.

You MUST implement the problem using semaphores.

a. (6 points) What are the correctness constraints?
1. After the 10th reindeer arrives, Santa must call prepareSleigh(), then all ten
reindeer must call getHitched()

2. After the 5th elf arrives, Santa must invoke helpElves(). All 5 elves should
invoke getHelp()

3. All 5 elves must invoke getHelp() before any other elves enter

b. (6 points) Initialize the global variables:
int num_elves = 0;
int num_reindeer = 0;
santaSem = Semaphore(0);

reindeerSem = Semaphore(0);
elfSem = Semaphore(1);
lock = Semaphore(1);

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 14/16

c. (5 points) Implement the Santa() function:
Santa() {
 while(1) {
 santaSem.P();
 lock.P();
 if num_reindeer == 10 {
 prepareSleigh();
 reindeerSem.V(); // do this 10 times
 num_reindeer -­‐= 10;
 } else if (num_elves == 5) {
 helpElves();
 }
 lock.V();

}

}

Santa either has to deal with all the reindeer arriving, or a group of elves who
need help. If ten reindeer are waiting, Santa calls prepareSleigh() then signals
reindeerSem 10 times so that the reindeer can invoke getHitched(). If elves are
waiting, Santa just calls helpElves(). He doesn’t need to worry about
decrementing any counter because the elves do that on their own on their way
out.

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 15/16

d. (5 points) Implement the ReindeerComesHome() function:
ReindeerComesHome() {
 lock.P();
 num_reindeer += 1;
 if (num_reindeer == 10) {
 santaSem.V();
 }
 lock.V();
 reindeerSem.P();
 getHitched();

}
The 10th reindeer signals Santa then joins the other reindeer waiting on the
reindeerSem. When Santa signals all the waiting reindeer, they execute
getHitched().

CS 162 Fall 2016 Midterm Exam #1 September 28, 2016
Solutions NAME: _______________________________________

 Page 16/16

e. (5 points) Implement the ElfRequestsHelp() function:
ElfRequestsHelp() {

 elfSem.P();
 lock.P();
 num_elves += 1;
 if (num_elves == 5) {
 santaSem.V();
 } else {
 elfSem.V();
 }
 lock.V();
 getHelp();
 lock.P();
 num_elves -­‐= 1;
 if (num_elves == 0) {
 elfSem.V();

}
lock.V();

}
The first four elves release the elfSem at the same time they release the lock, but
the last elf holds the elfSem, which prevents other elves from entering until all
three elves have invoked getHelp(). The last elf to leave releases the elfSem,
which allows the next group of elves to enter to request help from Santa.  

