Computer Science 162, Fall 2014
David Culler
University of California, Berkeley
Midterm 2
November 14, 2014

Name

SID

Login

TA Name

Section Time

This is a closed book exam with one 2-sided page of notes permitted. It is intended to be a 80 minute
exam. You have 80 minutes to complete it. The number at the beginning of each question indicates the
points for that question. Write all of your answers directly on this paper. Make your answers as concise
as possible. If there is something in a question that you believe is open to interpretation, please raise your
hand to request clarification. When told to open the exam, put your login on every page and check that
you have them all. (Final page is for reference.)

By my signature below, I swear that this exam is my own work. I have not obtained answers or partial
answers from anyone. Furthermore, if I am taking the exam early, I promise not to discuss it with anyone
prior to completion of the regular exam, and otherwise I have not discussed it with anyone who took the
early alternate exam.

Grade Table (for instructor use only)

Question | Points | Score

1 25
2 25
3 25
4 25

Total: 100

Computer Science 162, Fall 2014 Midterm 2 - Page 2 of 22 November 14, 2014

1. (25 points) Operating Systems Concepts

(a) (20 points) Choose either true or false for the below questions. You do not need to provide

justifications.

i

ii.

1ii.

1v.

vi.

vil.

viii.

1X.

(2 points) A thread that wants to signal other threads upon completion of a critical section
should do so with a Condition Variable after releasing the lock.
O True

/ False

(2 points) By using an atomic read-modify-write instruction, a user thread can acquire a lock
without entering the operating system.

v/ True

O False
(2 points) With paged virtual address translation threads only share state when they are

within the same process.
O True

\/ False
(2 points) With paged virtual memory, an process can be started with none of its code or
data pages being resident in memory.

\/ True

(O False

(2 points) The size of page tables is always much smaller than the size of physical memory.
O True
\/ False

(2 points) The offset within the page of a data element is the same in virtual memory page
and physical memory page, regardless of whether a single level or multi-level page table is
used.

v/ True

(O False
(2 points) With multi-level page tables, the TLB holds translations for each of the level.

O True

\/ False
(2 points) In a Unix-style system user access rights are checked on file read and file write
operations.

O True

\/ False
(2 points) Compared to FIFO, disk scheduling using shortest-seek-time first reduces average
seek time but also reduces fairness.

v/ True

(O False
(2 points) If all the operations in a transaction are durably recorded in the log, the transaction
can be applied to the disk store, before the final commit marker is placed in the log.

O True

\/ False

Computer Science 162, Fall 2014 Midterm 2 - Page 3 of 22 November 14, 2014

(b) (5 points) Which of the following is true about File System operation? Select all the choices that

apply.
v/ The directory structure can be searched on Open and need not be examined

on Read or Write.

(O The user FILE * object contains information about how the file is stored on disk.

(O SCAN has shorter average seek distance than C-SCAN because it services requests while
the head is moving in either direction.

\/ If the transaction log is stored on disk, requests must be written in order, as

with FIFO scheduling.
(O File Index structures are optimized to handle small and large files in the same manner.

Computer Science 162, Fall 2014 Midterm 2 - Page 4 of 22 November 14, 2014

2. (25 points) Page Tables

The following figure (Figure 1) shows the relevant state of a machine with 32-bit virutal address space
supported by a two-level page table with 4 KB pages. The contents of several of the frames of physical
memory are shown on the right with physical addresses. On the left are several machine registers,
including the PC and the page table base register, which contains the physical frame number of the
root page table. A 4-entry, fully associative TLB is initially all empty. Page table entries have the valid
flag as the most siginificant bit and the physical frame number of valid entries in the low order bits.
Other flags can be assumed to be zero for this problem.

You are to step through the three instructions whose address and dis-assembly is shown in the figure.

(a) (9 points) Describe which bits of the 32-bit virtual address are used for each part of the virtual
address translation.
For the address of the first instruction, 0x1104 4110, show the value of each of these bit fields.

For each of the page table accesses, what is the byte offset of the page table entry that is accessed?

Solution: Bits 31-22 is the index into the root page table. The entry, if valid contains the
frame number of the second level page table

Bits 21-12 is the index into the second level page table. The entry, if valid contains the frame
number of the data page.

Bits 11-0 is the byte index of the data element in the data page.

In binary this is 0001 0001 0000 0100 0100 0001 0001 000

So the fields are 0001 0001 00 = 00 0100 0100 = 0x044 00 0100 0100 = 0x044 0001 0001 000
= 0x110

Each page table entry is 4 bytes in size, so the offset for both is is

0001 0001 0000 = 0x110

(b) (16 points) In the space provided below, you should write down the operation, address, and value
associated with every memory operation associated with the three instructions. (You will notice
that the page table entries are word aligned, 32-bit objects, hence the byte offset is 4 times the
index.) Also, update the state of the memory, registers, and TLB by over-writing the figure.
Identify any exceptions that are generated (but do not worry about handling them).

Computer Science 162, Fall 2014

Midterm 2 - Page 5 of 22

November 14, 2014

Registers

rO[ox0000 0000
r1[0x0000 0000
r2| 0x1104 5110
r3| _ 0x0000 0000

PC[0x1104 4110 |

PTBR| 0x00010020 |

Disassembly of 15t Three Instructions

0x1104 4110: load r1, (r2)
Ox1104 4114: add r2, r2, 4096
0x1104 4118: load r3, (r2)

TLB contents

Physical Memory

0x8001 0030

0x1001 0000

0x1001 0110

0x8001 0050

O0x0001 0040

0x8001 0010

0x8001 0040

0x8001 8840

Ox8140 0000

O0x0240 1000

0x8341 0000

0x8001 0060

0x3001 0050

0x28001 0050

0x0240 1000

Ox0000 1000

0x0000 1001

Figure 1: Figure for question 2.

0x1001 0114
0x1001 0118

0x1002 0000

0x1002 0110
0x1002 0114
0x1002 0118

0x1003 0000

0x1003 0110
0x1003 0114

0x1003 0118

Ox1004 0000

0x1004 0110
0x1004 0114
0x1004 0118

Ox1005 0000

O0x1005 0110
0x1005 0114

0x1005 0118

Ox1006 0000

0x1006 0110
0x1006 0114
0x1006 0118

Computer Science 162, Fall 2014

Midterm 2 - Page 6 of 22

operation

address

value

comment

root PT fetch

0x1002 0110

0x8001 0010

Read valid PTE for 2nd level page

November 14, 2014

Solution:
operation address value comment
root PT fetch | 0x1002 0110 | 0x8001 0010 read valid PTE for 2nd level page
PT fetch 0x1001 0110 | 0x8001 0030 read valid PTE for data page
TLB add TLB entry: 0x11044 => 0x10030
i fetch 0x1003 0110 | 0x8140 0000 fetch first instruction

root PT fetch
PT fetch
TLB add
load

Reg WB
TLB hit

i fetch

TLB hit
i fetch

TLB miss
root PT fetch
PT fetch
Page Fault
Grade Rubric:

0x1002 0110

0x1000 0114

0x1005 0110

0x1003 0114

0x1003 0118

0x1002 0110
0x1001 0118

1d r1,(r2)
0x8001 0010
0x8001 0050

0x0040 1000

0x0240 1000

0x8341 0000
load 13, (12)

0x8001 0010
0x0001 0040

add r2, r2, 4096

read valid PTE for 2nd level page
read valid PTE for data page
TLB entry: 0x11045 => 0x10050
read data word

rl <= 0040 1000

ifetch 0x1104 4114

fetch 2nd instruction

ifetch 0x1104 4118
fetch 3rd instruction

0x1104 6110
read valid PTE for 2nd level page

read not-valid PTE for data page
VA 0x1104 6110

Computer Science 162, Fall 2014 Midterm 2 - Page 7 of 22

November 14, 2014

DN — = NN DN NN

Root PT Fetch - occurs three times

Second Level PT Fetch - occurs three times
Add Translation to the TLB - twice

TLB hit - occurs twice

TLB miss - occurs three time

Page Fault

Reg write-back

instruction fetch - twice

data load - once

Computer Science 162, Fall 2014 Midterm 2 - Page 8 of 22 November 14, 2014

3. (25 points) File Sytems

Consider the following file system code drawn from Pintos. You may assume all the code is run on intel
x86 32 bit architechture.

#define BLOCK_SIZE 4096

/* Block device that contains the file system. */
struct block *fs_device;

/* Reads sector SECTOR from BLOCK into BUFFER */
void block_read (struct block *block, block_sector_t sector, void *buffer);

/* Write sector SECTOR to BLOCK from BUFFER, mark block as not free */
void block_write (struct block *block, uint32_t sector, const void *buffer)

/* Returns one free block */
long get_free_block();

/* Marks given block as free */
void free_block(long bnum) ;

/* On-disk inode.
Must be exactly BLOCK_SIZE bytes long. */
struct inode_disk

{
uint32_t start; /* First data sector. */
long length; /* File size in bytes. */
unsigned int magic; /* Magic number. */
uint32_t unused[1021]; /* Not used. */

I

/* In-memory inode. */
struct inode

{
struct list_elem elem; /* Element in inode list. */
uint32_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* 0: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */

};

(a) (4 points) In fifteen words or less, what can you say about how files are allocated on disk in
this file system.
Solutions longer than 15 words will receive no credit

Solution: A file must be allocated contiguously on disk.

Computer Science 162, Fall 2014 Midterm 2 - Page 9 of 22 November 14, 2014

(b) (2 points) Recall that in the unix file system inodes had both direct and indirect block pointers.
We decide in our file system we want our inodes to always be in one of two modes: either the
maximum amount of direct block pointers or the maximum amount of singly indirect block point-
ers, but never mixed. Please modify the struct definitions below to allow that behavior. We have
added the mode field for you. You may delete fields

Make the minimum number of modificatins necessary for proper functionality, extra-
neous modifications will incur a loss of points

/* On-disk inode.
Must be exactly BLOCK_SIZE bytes long. */
struct inode_disk

{
uint32_t mode; /* direct or indirect mode */
long length; /* File size in bytes. */
unsigned int magic; /* Magic number. */
uint32_t unused[1021]; /* Not used. */

+s

/* In-memory inode. */
struct inode

{
struct list_elem elem; /* Element in inode list. */
uint32_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* 0: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */

};

Solution:

/* On-disk inode.
Must be exactly BLOCK_SIZE bytes long. */
struct inode_disk

Computer Science 162, Fall 2014 Midterm 2 - Page 10 of 22 November 14, 2014

uint32_t mode;

uint32_t data[1021];

long length; /* File size in bytes. */
unsigned int magic; /* Magic number. */

};

/* In-memory inode. */
struct inode

{
struct list_elem elem; /* Element in inode list. */
uint32_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* 0: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */

};

(c) (2 points) What is the maximum theoretical file size in this file system now?

Solution: 1021*1024*4096 bytes

Computer Science 162, Fall 2014 Midterm 2 - Page 11 of 22 November 14, 2014

(d) (5 points) Implement the function fblock_to_dblock. We have given you a skeleton. You need
to complete the error checking and the operational parts.

/* Converts file_block_num (a block offset into the file) to an absolute disk_block_num t
returns -1 in the case of error.

*/

long

fblock_to_dblock (struct inode *inode, int file_block_num)

{

long bnum;
if (inode->data.mode) {

} else {

} else {
return -1;

}

return bnum;

Solution:
int
fblock_to_dblock (struct inode *inode, int file_block_num, int errx*)
{
int bnum;
if (inode->data.mode){

Computer Science 162, Fall 2014 Midterm 2 - Page 12 of 22

November 14, 2014

if (file_block_num <= 1021 &&

file_block_num <= inode->data->length/BLOCK_SIZE) {

bnum = inode->datal[file_block_num]

} else {
return -1
}
} else {

if (file_block_num <= 1021%1024) {
int indirect_bnum = file_block_num/1024;
int offset = file_block_num % 1024;
block_read(fs_device, indirect_bnum, buffer);
bnum = ((uint32_t*) buffer) [offset]

} else {
return -1

}

return bnum;

Computer Science 162, Fall 2014 Midterm 2 - Page 13 of 22 November 14, 2014

(e) (4 points) Now implement inode_block_read to support the above implementation. You may
assume fblock_to_dblock is implemented correctly.
/* Tries to read BLOCK_SIZE bytes from INODE into BUFFER from file_block_num
Returns the number of bytes actually read, which may be less
than BLOCK_SIZE if end of file or and error is reached.
err is filled when an error occurs
*/
long
inode_block_read (struct inode *inode, void *buffer_, int file_block_num, int* err)
{
long bytes_read = BLOCK_SIZE;
long sector_idx = fblock_to_dblock(inode, file_block_num);

bytes_read =
}
block_read (fs_device, sector_idx, buffer);
return bytes_read;

Solution:
/* Tries to read BLOCK_SIZE bytes from INODE into BUFFER from file_block_num
Returns the number of bytes actually read, which may be less
than BLOCK_SIZE if end of file or and error is reached.
err is filled when an error occurs
*/
long
inode_block_read (struct inode *inode, void *buffer_, int file_block_num, int* err)

{

I

fblock_to_dblock(inode, file_block_num);
BLOCK_SIZE;

long sector_idx
long bytes_read

if (sector_idx < 0) {
*err = 1,
return O;

}

if (inode->data->length/BLOCK_SIZE == file_block_num) {
bytes_read = inode->data->length)BLOCK_SIZE;

}

block_read (fs_device, sector_idx, buffer);

return bytes_read;

Computer Science 162, Fall 2014 Midterm 2 - Page 14 of 22 November 14, 2014

Computer Science 162, Fall 2014 Midterm 2 - Page 15 of 22 November 14, 2014

(f) (4 points) Consider the below implementation of inode_block_write.
/* Writes BLOCK_SIZE bytes from BUFFER into INODE, starting at file_block_num+*BLOCK_SIZE
all inputs are assumed to be valid and in bounds. Zero pads if file_block_num is greater
than file size.

*/
void inode_write_block (struct inode *inode, const void *buffer_, int file_block_num, int e:
{
long bnum = fblock_to_dblock(inode, file_block_num);
if (file_block_num > inode->data.length/BLOCK_SIZE) {
void* zeros = calloc(BLOCK_SIZE,1);
for (int i = inode->data.length/BLOCK_SIZE + 1; i < file_block_num; ++i){
block_write(fs, fblock_to_dblock(inode, i), zeros);
}
}
block_write(fs_device, bnum, buffer);
inode_recalc_length(inode); // updates length field if necessary.
}

Assuming all inputs to inode_write_block are valid and in bounds, In forty words or less,
state whether the above implementation is correct (no explanation necessary), or precisely describe
the steps necessary to fix the above implementation.

Solution: Check if the file_block_num is greater than 1021, if so change the mode of the
file, and copy all the direct block pointers into an indirect block.

(g) (4 points) Given that our superblock has a fixed size inode region 2M B in size Draw a histogram
on the graph below to reflect the usage pattern that this file system is optimized for. Remember
to label the values one ach axis so we can interpret your graph properly. Particularly consider the
maximum attainable values on either axis.

[Sp)

Solution: We were looking for a bimodal graph with two peaks at 1021*4096 and 1021*1024*409
21
bytes. The peaks should be less than gﬁ

Number of Files

File Size

Computer Science 162, Fall 2014

Midterm 2 - Page 16 of 22 November 14, 2014

4. (25 points) Syscall Implementation

This question requires you to implement the dup2() syscall.

According to the man page, dup2(int oldfd, int newfd) makes newfd become the copy of oldfd,
closing newfd first if necessary. After a successful return the old and new file descriptors may be used
interchangeably. If oldfd is not a valid file descriptor, the call fails and newfd is not closed. If oldfd is
a valid file descriptor and newfd has the same value as oldfd, then dup2() does nothing. On success,
these system calls return the new descriptor. On error, -1 is returned.

(a) (3 points) Below is a simple Linux C program which uses the dup2() syscall to redirect stdin so
that executed process greps the word "cs162" from the file "cs162.txt". Fill in the blanks. Assume
calls to open close and execvp succeed.

#include
#include
#include
#include
#include

<stdio.h>
<unistd.h>
<fcntl.h>
<sys/types.h>
<sys/stat.h>

int main(int argc, char **argv)

{

char *grep_args[] = {"grep", "cs162", NULL};

int in

= open("cs162.txt", O_RDONLY);

// replace standard input with input file

dwp2(_______________);
close(in); // close unused file descriptors
execvp("grep", grep_args); // execute grep
+
Solution:

// replace standard input with input file
dup2(in, 0);

(b) (5 points) Suppose you have to implement dup2 in Pintos. The following code provides a frame-
work for the Pintos implementation of dup2. You may assume fs_lock is properly initialized.
Read it and answer the questions following.

struct thread

{

/* Other members as in your pintos projects */

/* Owned by syscall.c. */

struct list fds;
int next_handle;

/* List of open file descriptors. */
/* Look at the sys_open and sys_close code

in the appendix to figure out its purpose */

Computer Science 162, Fall 2014 Midterm 2 - Page 17 of 22 November 14, 2014

/* A file descriptor, for binding a file handle to a file object. */
struct file_descriptor

{
struct list_elem elem; /* List element */
struct file *file; /* File object */
int handle; /* File handle */
};

/* Returns the file descriptor associated with the given handle.
Returns NULL if HANDLE is not associated with an
open file. */

static struct file_descriptor *lookup_fd (int handle) {
struct thread *cur = thread_current ();
struct list_elem *e;

for (e = list_begin (&cur->fds); e != list_end (&cur->fds);
list_next (e))

e

struct file_descriptor *fd;
fd = list_entry (e, struct file_descriptor, elem);
if (fd->handle == handle)
return fd;
}
return NULL;
}

static struct lock fs_lock;

For reference on how these structures can be used to implement the syscalls open and close, refer
to the appendix.
i. (3 points) What is the purpose of the lock in the functions sys_open and sys_close (given
in the appendix?)

Solution: To isolate this instance of open and close from all other file system calls since
they might manipulate the file descriptor data structure.

ii. (2 points) What is next_handle member in struct thread?

Solution: The next free file handle number.

(c¢) (15 points) Given this setup, implement the dup2 system call using the skeleton below. Assume
that the global syscall table calls the required functions, and copies the returned value to the eax
register. You do not have to set errno. Make sure your code has no memory leaks. You are NOT
allowed to write more lines of code than the blanks given. Assume calls to malloc succeed, and user
programs are single-threaded. (Do not worry about modifying or bound-checking next_handle
in this system call).

Computer Science 162, Fall 2014 Midterm 2 - Page 18 of 22 November 14, 2014

static int sys_dup2(int oldfd, int newfd)
{
/* Variable initialization
nfd : new file_descriptor
ofd : old file_decriptor
*/

struct file_descriptor *nfd, *ofd;

if (newfd == o0ldfd) return newfd; /* handle special case */

return newfd;

}

Solution:

Grading:
1. Lock acquire and release
2. Use lookup to get ofd.

Computer Science 162, Fall 2014 Midterm 2 - Page 19 of 22 November 14, 2014

3. If oldfd is not a valid file descriptor,
then the call fails, and newfd is not closed.
4. Determine if newfd is a valid file descriptor with lookup
5. if new dup2() makes newfd be the copy of oldfd, the original newfd must be clpsed
6. if newfd is yet unallocated, allocate.
7. Make new same as old
All are 2 points, except 6 is 3.

static int
sys_dup2(int oldfd, int newfd)
{

struct file_descriptor *nfd, *ofd;
if (newfd == o0ldfd) return newfd;
ofd = lookup_fd(oldfd);

if (ofd == NULL) { /* if not a valid file descriptor, return error */
return -1;

}

nfd = lookup_fd(newfd);

if (nfd == NULL) {

/* Allocate a new file_descriptor.

Push it into current thread’s file descriptor table */
nfd = malloc(sizeof (struct file_descriptor));
nfd->handle = newfd;
list_push_front (&thread_current ()->fds, &nfd->elem);

} else {

lock_acquire(&fs_lock);
file_close (nfd->file);
lock_release(&fs_lock);
}

nfd->file = ofd->file; /* Make new file same as old file */

return newfd;

Computer Science 162, Fall 2014 Midterm 2 - Page 20 of 22 November 14, 2014

(d) (2 points) Consider the user program in part(a) running in Pintos as well as Linux. Why does
this program work as expected (i.e grep has its input redirected from cs162.txt) in Linux but not
in Pintos 7 (Assume that execvp is replaced by exec in Pintos, and the arguments to exec are
valid)

Solution: Pintos : File descriptors are not maintained across exec(). Linux : File descriptors
remain . Only process image is modified.

Computer Science 162, Fall 2014 Midterm 2 - Page 21 of 22

November 14, 2014

/************Reference Sysca]_l Implementatj_on ***********************/

static int sys_open (const char *ufile) {
// Copy userspace pointer to kernel space
char *kfile = copy_in_string (ufile);
struct file_descriptor *fd;
int handle = -1;

fd = malloc (sizeof *fd);
if (fd !'= NULL) {
lock_acquire (&fs_lock);
fd->file = filesys_open (kfile);
if (fd->file != NULL)
{
struct thread *cur = thread_current ();
handle = fd->handle = cur->next_handle++;
list_push_front (&cur->fds, &fd->elem);
}
else
free (fd);
lock_release (&fs_lock);
+
palloc_free_page (kfile);
return handle;

/* Close system call. */
static int
sys_close (int handle){
struct file_descriptor *fd = lookup_fd (handle);
lock_acquire (&fs_lock);
file_close (fd->file);
lock_release (&fs_lock);
list_remove (&fd->elem);
free (£f4);
return 0;

[FF KRRk kR kk - SEring Processing skkkkskkkkokkxkkokk /

char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

Computer Science 162, Fall 2014 Midterm 2 - Page 22 of 22 November 14, 2014

This page has intentionally been left blank

DO NOT WRITE ANSWERS ON THIS PAGE

