
 Page 1/20

University of California, Berkeley
College of Engineering

Computer Science Division EECS
Fall 2009

John Kubiatowicz

Midterm I
October 19th, 2009

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Circle the letters
of CS162
Login

First: a b c d e f g h I j k l m n o p q r s t u v w x y z
Second: a b c d e f g h I j k l m n o p q r s t u v w x y z

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 2 pages of notes (both sides). You may use a
calculator. You have 3 hours to complete as much of the exam as possible. Make sure to read all of
the questions first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 20

2 18

3 24

4 20

5 18

Total 100

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 2/20

[This page left for]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 3/20

Problem 1: True/False [20 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: Apple was the first company to develop mice and overlapping windows.

 True / False
 Explain:

Problem 1b[2pts]: A direct mapped cache can sometimes have a higher hit rate than a fully
associative cache with an LRU replacement policy (on the same reference pattern).

 True / False
 Explain:

Problem 1c[2pts]: Threads within the same process share the same heap and stack.

 True / False
 Explain:

Problem 1d[2pts]: A microkernel-style operating system uses multiple address spaces inside the
operating system – with components such as the file system, network stack, and device drivers all
running at user level.

 True / False
Explain:

Problem 1e[2pts]: An operating system that implements on-demand paging on a machine with
software TLB miss handling (such as MIPS) must use an inverted page table.

 True / False
 Explain:

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 4/20

Problem 1f[2pts]: If the banker's algorithm finds that it's safe to allocate a resource to an existing
thread, then all threads will eventually complete.

True / False
 Explain:

Problem 1g[2pts]: The Nachos operating system uses Mesa-style condition variables for all
synchronization.

True / False
 Explain:

Problem 1h[2pts]: The lottery scheduler prevents CPU starvation by assigning at least one ticket to
each scheduled thread.

True / False
 Explain:

Problem 1i[2pts]: Multicore chips (i.e. processor chips with more than one CPU on them) are only
here for the short term (next few years) until the transistor feature size reaches 10nm.

True / False
 Explain:

Problem 1j[2pts]: Thread pools are a useful tool to help prevent the “Slashdot” effect from
crashing Web servers.

True / False
 Explain:

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 5/20

Problem 2: Synchronization [18 pts]
Problem 2a[3pts]: Consider a Hash table with the following interface:

 1. public class HashTable {
 2. public void Put(int Key, int Value) {}
 3. public int Get(int Key) {} // Return 0 if no previous Put() on Key
 4. public void Remove(int Key) {} // No-op if no previous Put() on Key
 5. }

Assume that Get() must return the valid Value for any Key that has been written by previous
Put() methods. If a Put() method on a given Key is happening at the same time as a Get()
method, then the Get() method may return an earlier Value. In our attempt to make the
HashTable threadsafe (i.e. usable by multiple threads at the same time), we might decided to make
all three methods “synchronized” methods (e.g. Java synchronized statements). Would this have
negative performance implications? Explain carefully (fully justify your answer; if the answer is
“yes”, explain why you think you could get better threadsafe performance. If the answer is “no”,
explain why this is the best threadsafe performance you could expect):

Problem 2b[2pts]: Explain the difference in behavior between Semaphore.V() and
CondVar.signal() when no threads are waiting in the corresponding semaphore or condition
variable:

Problem 2c[3pts]: Explain how Nachos is able to implement the correct semantics for
CondVar.signal() using Semaphore.V(). Be explicit and make sure to explain why the
different of (2b) is not an issue here.

Problem 2d[2pts]: Give two reasons why this is a bad implementation for a lock:

lock.acquire() { disable interrupts; }
lock.release() { enable interrupts; }

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 6/20

Problem 2e[8pts]: Suppose that we want a finite synchronized FIFO queue that can handle
multiple simultaneous enqueue() and dequeue()operations. Assume that enqueue() and
dequeue() are not allowed to busywait (but rather must sleep) when the queue is either full or
empty respectively. Here is a sketch of an implementation utilizing a circular buffer:

 1. static final int QUEUESIZE=100;
 2. class FIFOQueue {
 3. Lock FIFOLock=new Lock(); // Methods acquire() and release()
 4. CondVar CV1=new CondVar(FIFOLock);// Methods wait(),signal(),broadcast()
 5. CondVar CV2=new CondVar(FIFOLock);// Methods wait(),signal(),broadcast()
 6. Object FIFO[QUEUESIZE]; // Finite circular queue of Objects
 7. int head = 0, tail = 0; // Start out “empty”
 8.
 9. void Enqueue(Object newobject) {
 10. /* Enqueue Method. Spin until can enqueue */
 11. }
 12. Object Dequeue() {
 13. /* Dequeue Method. Spin until can dequeue */
 14. }
 15. }

Implement the Enqueue() and Dequeue() methods using monitor synchronization. You should
enqueue using the tail variable and dequeue at the head. Remember that spin waiting is not allowed.
You should have no more than 10 lines for each method. Hint: make sure to account for wrapping
of head and tail pointers and assume Mesa scheduling of the monitors.

void Enqueue(Object newobject) {

}
Object Dequeue() {

}

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 7/20

[This page intentionally left blank]

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 8/20

 Problem 3: Deadlock and the Cephalopod Banquet [24pts]
Problem 3a[4pts]: Name and explain the four conditions for deadlock:

Problem 3b[2pts]: Suppose that we utilize the Banker’s algorithm to determine whether or not to
grant resource requests to threads. The job of the Banker’s algorithm is to keep the system in a
“SAFE” state. It denies resource requests by putting the requesting thread to sleep if granting the
request would cause the system to enter an “UNSAFE” state, waking it only when the request could
be granted safely. What is a SAFE state?

Problem 3c[3pts]: Explain how the Banker’s algorithm prevents deadlock by removing one or
more of the conditions of deadlock from (3a). Be explicit.

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 9/20

Problem 3d[4pts]: Suppose that we wish to evaluate the current state of the system and declare
whether or not it is in a SAFE state. In order to do this, we will need to keep explicit track of the
resources in the system. In particular, if there were only two types of resource, we could describe
the state of the system with the following data structures:

 class FreeResources {
 int FreeResA, FreeResB; // Number of copies of resource that are free
 }
 /* Per-thread descriptor of thread resources */
 class ThreadResources {
 int MaxNeededA, MaxNeededB; // Max number copies of resource needed
 int CurHeldA, CurHeldB; // Current number resources held
 }
 ThreadResources[] ThreadRes;

Assume that FreeRes and ThreadRes have been initialized to reflect the current state of the system.
Here is a sketch for how we could check for safety:

 1. boolean IsSAFE(FreeResources FreeRes, ThreadResources[] ThreadRes) {
 2. Int FreeA = FreeRes.FreeResA, FreeB = FreeRes.FreeResB;
 3. boolean[] ThreadFinished = new boolean[ThreadRes.length];
 4. int RemainingThreads = ThreadRes.length;
 5. boolean finished = false;
 6. while (!finished) {
 7. finished = true;
 8. for (int i = 0; i < ThreadRes.length; i++) {
 9. if (!ThreadFinished[i]) {
 10. /* Missing Code */
 11. }
 12. }
 13. }
 14. return (RemainingThreads == 0); /* SAFE if no threads left */
 15. }

Provide the missing Code at line 10. This code should have no more than 8 lines and should not
alter the external variables (arguments). Hint: work through the threads that can complete.

Code for Line 10:

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 10/20

The Cephalopod Diners Problem: Consider a large table with identical multi-even-armed
cephalopods (e.g. octopuses). In the center is a pile of forks and knives. Before eating, each diner
must have an equal number of forks and knives, one in each arm (e.g. if octopuses are eating, they
would each need four forks and four knives). The creatures are so busy talking that they can only
grab one utensil at a time. They also grab utensils in a random order until they have enough utensils
to eat. After they finish eating, they return all of their utensils at once. Diners are implemented as
threads that ask for utensils and return them when finished. Consider the following sketch for a
CephTable class to implement the Cephalopod Diners problem using monitor synchronization:

1. class DinerUtensils {
2. public int forks,knives; // utensils held by creature
3. } // clearly forks+Knives <= NumArms

 4. public class CephTable {
 5. Lock lock = new Lock(); // acquire(), release()
 6. CondVar CV = new CondVar(lock);//wait(),signal(),broadcast();
 7. public DinerUtensil[] Diners; // Accounting: utensils for each diner
 8. int NumArms; // Number of arms for every diner
 9. int IdleForks, IdleKnives; // Number of forks/knives on table
 10.
 11. public CephTable(int NumDiners, int NumArms, int Forks, int Knives){
 12. Diners = new DinerUtensils[NumDiners]; // info about each Diner
 13. This.NumArms = NumArms; // Number of arms per Diner
 14. This.IdleForks = Forks; // Number Forks on table initially
 15. This.IdleKnives = Knives; // Number Knives on table initially
 16. }
 17. public void GrabUtensil(int CephalopodID, boolean WantFork) {
 18. /* Try to grab a utensil from table */
 19. }
 20. public void DoneEating(int CephalopodID) {
 21. /* Return all chopsticks to pile */
 22. lock.acquire();
 23. IdleForks += Diners[CephalopodID].forks;
 24. IdleKnives += Diners[CephalopodID].knives;
 25. Diners[CephalopodID].forks = 0;
 26. Diners[CephalopodID].knives = 0;
 27. CV.broadcast();
 28. lock.release();
 29. }
 30. boolean CephCheck(int CephalopodID, int numforks, int numknives) {
 31. /* See if ok to give dinner numforks forks and numknives knives. */
 32. }
 33. }

Problem 3e[3pts]: In its general form, the Banker’s algorithm makes a decision about whether or
not to allow an allocation request by making multiple passes through the set of resource holders
(threads). See, for instance, the fact that there are two loops in (3d) to determine safety. Explain
why a Banker’s algorithm dedicated to the Cephalopod Diners problem, namely the CephCheck()
routine, could operate with a single pass through the resources holders:

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 11/20

Problem 3f[4pts]: Implement the CephCheck method of the CephTable Object, namely fill in code
for line 31 above. This method should implement the Banker’s algorithm: return true if the given
Cephalopod can be granted ‘numforks’ forks and ‘numknives’ knives without taking the
system out of a SAFE state. Do not blindly implement the Banker’s algorithm: this method only
needs to have the same external behavior as the Banker’s algorithm for this application. Note that
this method is part of the CephTable Object and thus has access to local variables of that object.
This code should not permanently alter the local variables of the CephTable Object (although it
can do so temporarily). Do not worry about making this routing threadsafe; it will be called with a
lock held. We will give full credit for a solution that takes a single pass through the diners, partial
credit for a working solution, and no credit for a solution with more than 15 lines. Hint: it is easier
to first check the requesting Cephalopod, then the rest.

Code for Line 31:

Problem 3g[4pts]: Implement the code for the GrabUtensil() routine, namely fill in code for line 18
above. Its behavior is that it should check to whether or not it is ok to grant the requested type of
utensil to the caller and if not, sleep until it is ok. This code should call the CephCheck() routine as
a subroutine and should be threadsafe namely, it should be able to deal with multiple threads
accessing the state simultaneously. You should implement this routine as a monitor and assume
Mesa scheduling. It is up to the Cephalopod to eat and subsequently call DoneEating(); you should
not do that in GrabUtensil(). This routine can be written in 8 lines, but you can use up to 12:

Code for Line 18:

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 12/20

[This page intentionally left blank]

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 13/20

Problem 4: Virtual Memory [20 pts]
Consider a multi-level memory management scheme with the following format for virtual
addresses:

Virtual Page #
(10 bits)

Virtual Page #
(10 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(20 bits)

Offset
(12 bits)

Page table entries (PTE) are 32 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0

L
arge

P
age

D
irty

A
ccessed

N
ocache

W
rite

T
hrou gh

U
ser

W
riteable

V
alid

Here, “Valid” means that a translation is valid, “Writeable” means that the page is writeable, “User”
means that the page is accessible by the User (rather than only by the Kernel). Note: the phrase
“page table” in the following questions means the multi-level data structure that maps virtual
addresses to physical addresses.

Problem 4a[2pts]: How big is a page? Explain.

Problem 4b[2pts]: Suppose that we want an address space with one physical page at the top of the
address space and one physical page at the bottom of the address space. How big would the page
table be (in bytes)? Explain.

Problem 4c[2pts]: What is the maximum size of a page table (in bytes) for this scheme? Explain.

Problem 4d[2pts]: How big would each entry of a fully-associative TLB be for this management
scheme? Explain.

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 14/20

Problem 4e[2pts]: Sketch the format of the page-table for the multi-level virtual memory
management scheme of (4a). Illustrate the process of resolving an address as well as possible.

Problem 4f[10pts]: Assume the memory translation scheme from (4a). Use the Physical Memory
table given on the next page to predict what will happen with the following load/store instructions.
Assume that the base table pointer for the current user level process is 0x00200000.

Addresses are virtual. The return value for a load is an 8-bit data value or an error, while the return
value for a store is either “ok” or an error. Possible errors are: invalid, read-only, kernel-only.
Hint: Don’t forget that Hexidecimal digits contain 4 bits!

Instruction Result Instruction Result

Load
[0x00001047] 0x50 Store

[0x02001345]

Store
[0x00C07665] ok Load

[0xFF80078F]

Store
[0x00C005FF]

ERROR:
read-only

 Load
[0xFFFFF005]

Load
[0x00003012] Test-And-Set

[0xFFFFF006]

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 15/20

Physical Memory [All Values are in Hexidecimal]
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
00000010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
00001010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00001020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
00001030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
00001040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
00002030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
00002040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
00002050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
00004000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79
00004010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
00004020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
00100000 00 00 10 65 00 00 20 67 00 00 30 00 00 00 40 07
00100010 00 00 50 03 00 00 00 00 00 00 00 00 00 00 00 00

…
00103000 11 22 00 05 55 66 77 88 99 AA BB CC DD EE FF 00
00103010 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 67

…
001FE000 04 15 00 00 48 59 70 7B 8C 9D AE BF D0 E1 F2 03
001FE010 10 15 00 67 10 15 10 67 10 15 20 67 10 15 30 67

…
001FF000 00 00 00 00 00 00 00 65 00 00 10 67 00 00 00 00
001FF010 00 00 20 67 00 00 30 67 00 00 40 65 00 00 50 07

…
001FFFF0 00 00 00 00 00 00 00 00 10 00 00 67 00 10 30 65

…
00200000 00 10 00 07 00 10 10 07 00 10 20 07 00 10 30 07
00200010 00 10 40 07 00 10 50 07 00 10 60 07 00 10 70 07
00200020 00 10 00 07 00 00 00 00 00 00 00 00 00 00 00 00

…
00200FF0 00 00 00 00 00 00 00 00 00 1F E0 07 00 1F F0 07

…

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 16/20

Problem 5: Scheduling [18pts]
Problem 5a[2pts]: Give two ways in which to predict runtime in order to approximate SRTF:

Problem 5b[2pts]: What scheduling problem did the original Mars rover experience? What were
the consequences of this problem?

Problem 5c[3pts]:
Five jobs are waiting to be run. Their expected running times are 10, 8, 3, 1, and X. In what order
should they be run to minimize average completion time? State the scheduling algorithm that
should be used AND the order in which the jobs should be run. HINT: Your answer will explicitly
depend on X.

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 17/20

Problem 5d[5pts]:
Here is a table of processes and their associated arrival and running times.

Process ID Arrival Time
CPU Running

Time
Process 1 0 2
Process 2 1 6
Process 3 4 1
Process 4 7 4
Process 5 8 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume
that context switch overhead is 0 and that new RR processes are added to the head of the queue and
new FCFS processes are added to the tail of the queue.

Time Slot FCFS SRTF RR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 18/20

Problem 5e[3pts]: Can any of the three scheduling schemes (FCFS, SRTF, or RR) result in
starvation? If so, how might you fix this?

Problem 5f[3pts]: Explain why a chess program running against another program on the same
machine might want to perform a lot of superfluous I/O operations.

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 19/20

[Scratch Page: Do not put answers here!]

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 20/20

[Scratch Page: Do not put answers here!]

