
 Page 1/21

University of California, Berkeley
College of Engineering

Computer Science Division ⎯ EECS

Fall 2008

John Kubiatowicz

Midterm I
SOLUTIONS

October 15th, 2008
CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 24

2 12

3 25

4 21

5 18

Total 100

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 2/21

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 3/21

Problem 1: Short Answer [24pts]

Problem 1a[2pts]: Give at least two reasons why the following implementation of a condition
variable is incorrect (assume that MySemi is a semaphore initialized to 0):

 Wait() { MySemi.P(); }
 Signal() { MySemi.V(); }

Some answers:
• Semaphores are commutative, while condition variables are not. Practically speaking, if

someone executes MySemi.V() followed by MySemi.P(), the latter will not wait. In contrast,
execution of Signal() before Wait() should have no impact on Wait().

• The above implementation of Wait() will deadlock the system if it goes to sleep on MySemi.P()
(since it will go to sleep while holding the monitor lock).

Problem 1b[4pts]: What is the difference between Mesa and Hoare scheduling for monitors?
Include passing of locks between signaler and signalee, scheduling of CPU resources, and impact
on programmer.

For Mesa scheduling, the signaler keeps the lock and CPU, while the signaled thread is simply put on
the ready queue and will run at a later time. Further, a programmer with Mesa scheduled monitors must
recheck the condition after being awoken from a Wait() operation [i.e. they need a while loop around
the execution of Wait(). For Hoare scheduling, the signaler gives the lock and CPU to the signaled
thread which begins running until it releases the lock, at which point the signaler regains the lock and
CPU. A programmer with Hoare scheduled monitors does not need to recheck the condition after being
awoken, since they know that the code after the Wait() is executed immediately after the Signal() [i.e.
they do not need a while loop around the execution of Wait()].

Problem 1c[3pts]: The SRTF algorithm requires knowledge of the future. Why is that? Name two
ways to approximate the information required to implement this algorithm.

SRTF stands for “Shortest Remaining Time First” and needs knowledge of the future to know which of
the threads on the ready queue will run for the shortest time. Ways to approximate this include:

1. Using a prediction mechanism like a Kalman filter or exponential filter to predict the future
given information about the past.

2. With a multi-level scheduler. Short tasks migrate to the top queue, while long ones migrate to
the bottom queue.

Problem 1d[3pt]: What is priority donation? What sort of information must the OS track to allow it
to perform priority donation?

Priority donation is the process of avoiding priority inversion by giving (“donating”) priority from a
high-priority blocked thread to a lower-priority thread holding a lock needed by the high-priority
thread. The OS must keep trace of lock acquisition and release operations and associate them with
threads in order to perform this optimization.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 4/21

Reader() {
 //First check self into system
 lock.acquire();
 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);

 WR--;
 }
 AR++;
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.release();
}

Writer() {
 // First check self into system
 lock.acquire();
 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }
 AW++;
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.release();
}

Problem 1e[3pts]: Above, we show the Readers-Writers example given in class. It used two
condition variables, one for waiting readers and one for waiting writers. Suppose that all of the
following requests arrive in very short order (while R1 and R2 are still executing):

 Incoming stream: R1 R2 W1 W2 R3 R4 R5 W3 R6 W4 W5 R7 R8 W6 R9

In what order would the above code process the above requests? If you have a group of requests
that are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’. You can
assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the
oldest thread on the queue). Explain how you got your answer.

Assuming that the requests all come in during the processing of R1 and R2, then all of the Write requests
will be queued on okToWrite and all of the read requests will be queued on okToRead. On exit of R1
and R2, the above code will proceed to execute each of the write requests, one at a time, in the order in
which they arrived (see our assumption about the wait queues for the condition variables). We know this
because both the Reader() and Writer() code on exit will signal the next waiting writer, if they
exist. After all of the writers are gone, the Writer() code will broadcast to wakeup all of the
Readers(), who will be able to run in parallel (see entry code of Reader()).

Answer: {R1, R2}, W1, W2, W3, W4, W5, W6, {R3, R4, R5, R6, R7, R8, R9}

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 5/21

Problem 1f[4pts]:
Suppose that you were to redesign the code in (1e). What is the minimum number of condition
variables that we would we need in order to handle the above requests in an order that guarantees
that a read always returns the results of writes that have arrived before it but not after it? (Another
way to say this is that the reads and writes occur in the order in which they arrive, while still
allowing groups of reads that arrive together to occur simultaneously.) Provide a two or three
sentence sketch of your scheme (do not try to write code!).

We accepted a couple of answers here:

1) The truly correct one is: 1! We only need a single condition variable on which to put threads to sleep.
We put the scheduling logic into a state variables manipulated by the monitor lock. Here, we assume that
each incoming request is assigned a sequentially increasing integer before it is put to sleep. This allows
us to divide all of the requests into phases. Each phase is either a read phase or a write phase and
includes a contiguous range of integers. When a new request arrives, we see whether it is compatible
(same type of request) with the phase at the end of the queue, in which case we increase the last integer
for that phase, or incompatible with the phase at the end of the queue, in which case we allocate a new
entry to the queue and place the new request into the new bin.

This information is sufficient to allow us to schedule each phase sequentially. If the head phase is a
read phase, we can wakeup all threads in that phase. If the head phase is a write phase, we can wake
them up one at a time.

2) A less optimal solution (not the “minimum number”) would be to have a queue of condition variables,
one for each phase of threads (readers or writers). For each incoming request, you would check the last
phase – if it matches the request type, you would put the request to sleep on the condition variables at
the end of the queue. If it doesn’t match the request type, you would allocate a new condition variable to
place at the end of the queue (i.e. create a new phase).

Problem 1g[3pts]: What are exceptions? Name two different types of exceptions and give an
example of each type:

Exceptions are interruptions in the flow of execution. There are two types of exceptions that we talked
about in class synchronous (traps) and and asynchronous (interrupts). Examples of synchronous
exceptions are: system calls, bad instruction exceptions, division by zero, page faults. Examples of
asynchronous exceptions are device interrupts of all sorts.

Problem 1h[2pts]: What was the problem with the Therac-25? Your answer should involve one of
the topics of the class.

The Therac-25 was a medical device for doing radiation therapy. Due to race conditions in its software,
it ended up killing a number of patients through overdoses. Among other things, if the operator typed too
fast while setting up a radiation session, it would exhibit the bug.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 6/21

Problem 2: TRUE/FALSE [12 pts]
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS
(Answers longer than this may not get credit!). Also, answers without an explanation GET NO
CREDIT.

Problem 2a[2pts]: The kernel on a multiprocessor can use the local disabling of interrupts (within
one CPU) to produce critical sections between the OSs on different CPUs.

 True / False
Explain: Disabling interrupts on one CPU doesn’t affect other CPUs. Consequently, other

CPUs keep executing when a single one has interrupts disabled.
Problem 2b[2pts]: When designing a multithreaded application, you must use synchronization
primitives to make sure that the threads do not overwrite each other’s registers.

 True / False
Explain: Registers are kept in the TCB and are private to each thread. Consequently, one

thread will not overwrite another thread’s register under normal circumstances.
Problem 2c[2pts]: A system that provides segmentation without paging can fragment the physical
address space, forcing the operating system to waste physical memory.

 True / False
Explain: The physical chunks of memory are the same size as the virtual chunks of

memory. Consequently, the physical address space can become fragmented as
the OS attempts to fit segments into the physical address space.

Problem 2d[2pts]: A user-level library implements each system call by first executing a “transition
to kernel mode” instruction. The library routine then calls an appropriate subroutine in the kernel.

 True / False
Explain: If this were true, user-level code could execute anything it wanted – a serious

security violation. Instead, syscalls use a trap instruction that simultaneously
changes to kernel mode and jumps to well-defined places in the kernel.

Problem 2e[2pts]: The difference between processes and threads is purely historical.

 True / False
Explain: A process is a combination of an address space and a set of threads. Thus,

threads are the execution context portion of a process.

Problem 2f[2pts]: Round robin scheduling provides a latency improvement over FCFS scheduling
for interactive jobs.

 True / False
Explain: By timeslicing jobs, RR scheduling avoids the problem FCFS in which interactive

jobs can get stuck behind long-running jobs.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 7/21

[This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 8/21

Problem 3: Atomic Synchronization Primitives [25 pts]
In class, we discussed a number of atomic hardware primitives that are available on modern
architectures. In particular, we discussed “test and set” (TSET), SWAP, and “compare and swap”
(CAS). They can be defined as follows (let “expr” be an expression, “&addr” be an address of a
memory location, and “M[addr]” be the actual memory location at address addr):

Test and Set (TSET) Atomic Swap (SWAP) Compare and Swap (CAS)

TSET(&addr) {
 int result = M[addr];
 M[addr] = 1;
 return (result);
}

SWAP(&addr, expr) {
 int result = M[addr];
 M[addr] = expr;
 return (result);
}

CAS(&addr, expr1, expr2) {
 if (M[addr] == expr1) {
 M[addr] = expr2;
 return true;
 } else {
 return false;
 }
}

Both TSET and SWAP return values (from memory), whereas CAS returns either true or false.
Note that our &addr notation is similar to a reference in c++, and means that the &addr argument
must be something that can be stored into (an “lvalue”). For instance, TSET could be used to
implement a spin-lock acquire as follows:
 int lock = 0; // lock is free

 // Later: acquire lock
 while (TSET(lock));

CAS is general enough as an atomic operation that it can be used to implement both TSET and
SWAP. For instance, consider the following implementation of TSET with CAS:
 TSET(&addr) {
 int temp;
 do {
 temp = M[addr];
 } while (!CAS(addr,temp,1));
 return temp;
 }

Problem 3a[3pts]:
Show how to implement a spinlock acquire with a single while loop using CAS instead of TSET.
You must only fill in the arguments to CAS below:

 // Initialization
 int lock = 0; // Lock is free

 // acquire lock

 while (!CAS(lock , 0 , 1));

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 9/21

Problem 3b[2pts]:
Show how SWAP can be implemented using CAS. Don’t forget the return value.

 SWAP(&addr, reg1) {

 Object return;
 do {
 return = M[addr];
 } while (!CAS(addr, return, reg1));

 }

Problem 3c[3pts]:
With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class we argued that
spinlocks were a bad idea because they can waste a lot of processor cycles. The alternative is to put a
waiting process to sleep while it is waiting for the lock (using a blocking lock). Contrary to what we
implied in class, there are cases in which spinlocks would be more efficient than blocking locks. Give a
circumstance in which this is true and explain why a spinlock is more efficient.

If the expected wait time of the lock is very short (such as because the lock is rarely contested or the
critical sections are very short), then it is possible that a spin lock will waste many fewer cycles than
putting threads to sleep/waking them up. The important issue is that the expected wait time must be less
than the time to put a thread to sleep and wake it up.

Short expected wait times are possible to capitalize on, for instance, in a multiprocessor because waiting
threads can be stalled on other processors while the lock-holder makes progress. Spin-locks are much
less useful in a uniprocessor because the lock-holder is sleeping while the waiter is spinning.

Some people mentioned I/O. However, you would have had to come up with a specific example of locks
in use between a thread and an I/O operation as well as mentioned interrupts for releasing the lock.

We were looking for mention of (1) expected wait time being important, (2) the length of time for putting
locks to sleep relative to the expected wait time of the lock, (3) a viable scenario such as a
multiprocessor.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 10/21

An object such as a queue is considered “lock-free” if multiple processes can operate on this object
simultaneously without requiring the use of locks, busy-waiting, or sleeping. In this problem, we
are going to construct a lock-free FIFO queue using the atomic CAS operation. This queue needs
both an Enqueue and Dequeue method.

We are going to do this in a slightly different way than normally. Rather than Head and Tail
pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last
object returned from the queue. Thus, we can find the head of the queue (for dequeuing). If we
don’t have to worry about simultaneous Enqueue or Dequeue operations, the code is
straightforward (ignore the null-pointer exception for the Dequeue() operation for now):

// Holding cell for an entry
class QueueEntry {
 QueueEntry next = null;
 Object stored;

 QueueEntry(Object newobject) {
 stored = newobject;
 }
}

// The actual Queue (not yet lock free!)
class Queue {
 QueueEntry prevHead = new QueueEntry(null);
 QueueEntry tail = prevHead;

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);
 QueneEntry oldtail = tail;
 tail = newEntry;
 oldtail.next = newEntry;
 }

 Object Dequeue() {
 QueueEntry oldprevHead = prevHead;
 QueueEntry nextEntry = oldprevHead.next;
 prevHead = nextEntry;
 return nextEntry.stored;
 }
}

Problem 3d[3pts]:
For this non-multithreaded code, draw the state of a queue with 2 queued items on it:

next

stored

O1

next

null

next

stored

O2

prevHead tail

next

stored

O1

next

null

next

stored

O2

next

stored

O1

next

stored

next

stored

O1

next

null

next

null

next

stored

O2

next

stored

next

stored

O2

prevHead tail

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 11/21

Problem 3e[3pts]:
For each of the following potential context switch points, state whether or not a context switch at that point
could cause incorrect behavior of Enqueue(); Explain!

 void Enqueue(Object newobject) {
1 QueueEntry newEntry = new QueueEntry(newobject);
2 QueueEntry oldtail = tail;
3 tail = newEntry;
 oldtail.next = newEntry;
 }

Point 1: No. Construction of a QueueEntry is a purely local operation (and does not touch shared state in
any way).

Point 2: Yes. An intervening Enqueue() operation will move the shared variable “tail” (and enqueue
another object). As a result, the subsequent “tail=newEntry” will overwrite the other entry.

Point 3: No. At this point in the execution, only the local thread will ever touch “oldtail.next” (since we
have moved the tail). Thus, we can reconnect at will. People who worried that the linked list is
“broken” until this operation can relax. The worse that will happen is that the list appears to be
shorter than it actually is until execution of “oldtail.next=newEntry,” at which point the new entry
becomes available for subsequent dequeue.

Problem 3f[4pts]:

Rewrite code for Enqueue(), using the CAS() operation, such that it will work for any number of
simultaneous Enqueue and Dequeue operations. You should never need to busy wait. Do not use locking
(i.e. don’t use a test-and-set lock). The solution is tricky but can be done in a few lines. We will be grading
on conciseness. Do not use more than one CAS() or more than 10 lines total (including the function
declaration at the beginning). Hint: wrap a do-while around vulnerable parts of the code identified above.

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);

 // Insert code here

 // Here, ‘tail’ is the shared variable that needs to be
 // protected by CAS. We must atomically swap in ‘newEntry’
 // to ‘tail’, giving us the old value so that we can link
 // it to the new item.

 QueueEntry oldtail;
 do {
 oldtail = tail; // Tentative pointer to tail
 } while {!CAS(tail,oldtail,newEntry);
 oldtail.net = newEntry;

 }

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 12/21

Problem 3g[3pts]:
For each of the following potential context switch points, state whether or not a context switch at that point
could cause incorrect behavior of Dequeue(); Explain!

 Object Dequeue() {
1 QueueEntry oldprevHead = prevHead;
2 QueueEntry nextEntry = oldprevHead.next;
3 prevHead = nextEntry;
 return nextEntry.stored;
 }

Point 1: Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’

that we are returning; consequently we end up dequeing the same entry multiple times.

Point 2: Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’
that we are returning; consequently we end up dequeing the same entry multiple times.

Point 3: No. The nextEntry has already been detached from the queue and is purely local. Thus, all that we
are doing is removing the stored value from nextEntry for returning it.

Problem 3h[4pts]:

Rewrite code for Dequeue(), using the CAS() operation, such that it will work for any number of
simultaneous Enqueue and Dequeue operations. You should never need to busy wait. Do not use locking
(i.e. don’t use a test-and-set lock). The solution can be done in a few lines. We will be grading on
conciseness. Do not use more than one CAS() or more than 10 lines total (including the function declaration
at the beginning). Hint: wrap a do-while around vulnerable parts of the code identified above.

 Object Dequeue() {

 // Insert code here

 // Here, ‘prevHead’ is the shared variable that needs to be
 // protected by CAS. We must atomically grab the value of
 // prevHead.next and swap it into prevHead. The CAS lets
 // us do this operation by making sure that prevHead is
 // still equal to oldprevHead at the time that we swap
 // in prevHead.next. Note that we have included a check to
 // handle empty queues (not required for your solution)

 QueueEntry oldprevHead, nextEntry;
 do {
 oldprevHead = prevHead;
 nextEntry = oldprevHead.next;
 if (nextEntry == null) // handle empty queue (not required
 return null; // for your solution)
 } while (!CAS(prevHead, oldprevHead, nextEntry));
 return oldprevHead.stored;

 }

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 13/21

 Problem 4: Deadlock[21 pts]
Problem 4a[5pts]:
The figure at the right illustrates a 2D mesh of network routers.
Each router is connected to each of its neighbors by two
network links (small arrows), one in each direction. Messages
are routed from a source router to a destination router and can
stretch through the network (i.e. consume links along the route
from source to destination). Messages can cross inside routers.

Assume that no network link can service more than one
message at a time, and that each message must consume a
continuous set of channels (like a snake). Messages always
make progress to the destination and never wrap back on
themselves. The figure shows two messages (thick arrows).

Assume that each router or link has a very small amount of buffer space and that each message
can be arbitrarily long. Show a situation (with a drawing) in which messages are deadlocked and
can make no further progress. Explain how each of the four conditions of deadlock are satisfied by
your example. Hint: Links are the limited resources in this example.

Answer: The simplest deadlock example is a set of four messages in a
loop (as shown in the figure at the left). Each message is blocked
attempting to make a counter-clockwise turn by a message utilizing the
target channel. Four conditions:

1. Mutual Exclusion: Each channel held by one message at a time
2. Hold and Wait: messages hold channels while waiting to acquire

other channels
3. No preemption: Channels can not be preempted from messages

after they are acquired by them
4. Circular wait: We have a cycle of waiting here – four messages

Problem 4b[3pts]:
Define a routing policy that avoids deadlocks in the network of (4a). Name one of the four
conditions that is no longer possible, given your routing policy. Explain.

Several answers are possible here. The one given in class was to force messages to route in the
X direction first, then Y. This removes the possibility of Circular Wait because it is no longer
possible to have the North→East or South→West turns which would be required in any loop.

Problem 4c[3pts]:
Suppose that each router node contains sufficient queue space to hold complete messages (assume
infinite space, if you like). Why is it impossible for deadlocks such as in (4a) to occur? Name one
of the four conditions that is no longer possible, given infinite queue space in the router. Explain.

Deadlocks can no longer occur as in (4a) because blocked messages simply absorb into the
queues at the blocking router – thereby freeing up the channels held by them. Clearlyt Hold and
Wait is no longer possible (messages do not hold channels while waiting for others). You might
be able to argue that Circular wait is no longer possible (any cycle would be transient).

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R

R R

R R

R R

R RR R

R RR R

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 14/21

Problem 4d[4pts]:
Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4. The total
number of each resource is:

Further, assume that the processes have the following maximum requirements and current
allocations:

Current Allocation Maximum Thread
ID A B C A B C
T1 2 1 3 4 9 4
T2 1 2 3 5 3 3
T3 5 4 3 6 4 3
T4 2 1 2 4 8 2

Is the system in a safe state? If “yes”, show a non-blocking sequence of thread executions.
Otherwise, provide a proof that the system is unsafe. Show all steps, intermediate matrices, etc.

Answer: Yes, this system is in a safe state.

To prove this, we first compute the currently free allocations:

Further, we compute the number needed by each thread (Maximum – Current Allocation):

Needed Allocation Thread

ID A B C
T1 2 8 1
T2 4 1 0
T3 1 0 0
T4 2 7 0

Thus, we can see that a possible sequence is: T3, T2, T4, T1:

Needed Allocation Current Allocation Available Before Thread
ID A B C A B C A B C
T3 1 0 0 5 4 3 2 1 1
T2 4 1 0 1 2 3 7 5 4
T4 2 7 0 2 1 2 8 7 7
T1 2 8 1 2 1 3 10 8 9

Total
A B C
12 9 12

Available
A B C
2 1 1

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 15/21

Problem 4e[3pts]:
Assume that we start with a system in the state of (4d). Suppose that T1 asks for 2 more copies of
resource A. Can the system grant this if it wants to avoid deadlock? Explain.

No. This cannot be granted. Assume that T1 gets 2 more of A.
Then, our available allocation is:

Then, looking at our needed allocations, we see:

At this point, the available allocation is insufficient to start any of the threads, much less find a
safe sequence that finishes all of them.

Problem 4f[3pts]:
Assume that we start with a system in the state of (4d). What is the maximum number of additional
copies of resources (A, B, and C) that T1 can be granted in a single request without risking
deadlock? Explain.

We cannot ask for more than (A,B,C)=(2,1,1) since this is all that is available. However, the
previous problem showed that A must be < 2. Further, note that the resources given to T1 are
tied up until the very end of the execution (look at sequence in 4d).

Thus, looking at our safe sequence from 4d, we can see that it can still work if it is missing one
A and one C. Just work through it with the first “Available Before” allocation of 1,1,0 instead
of 2,1,1. However, it will not work if it is missing one more B (we would be unable to execute T4
in the sequence), i.e. setting “Available Before” to 1,0,0 prevents the execution of T4.

Thus the maximum number of additional resources that can be requested by T1 is
(A,B,C)=(1,0,1)

Available
A B C
0 1 1

Needed Allocation Thread
ID A B C
T1 0 8 1
T2 4 1 0
T3 1 0 0
T4 2 7 0

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 16/21

[This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 17/21

Problem 5: Address Translation [18 pts]
Problem 5a[3pts]:
Suppose we have a 32-bit processor (with 32-bit virtual addresses) and 8 KB pages. Assume that it
can address up to 2 TB (terabytes) of DRAM; 1TB = 1024 GB = (1024)2 MB. Assume that we need
4 permissions bits in each page table entry (PTE), namely Valid (V), Writable (W), Accessed (A),
and Dirty (D). Show the format of a PTE, assuming that each page should be able to hold an integer
number of PTEs. If you have extra bits in the PTE, you can mark them as “unused”. Explain.

Since the PTE must have sufficient bits to address all of the physical pages, we must ask how
many physical pages there are. 2TB = 2×(1024)4=2×240=241. Total number of pages =
2TB/8KB = 241/213= 228 Consequently, we need 28 bits in the PTE for the physical page
number. With the 4 other bits, this leads us to a 32 bit PTE (which fits an integral number of
times in an 8KB page (with no wasted bits). Our PTE looks like (bits in any order):

Problem 5b[5pts]:
Assume that we wish to build a two-level page table for the processor from (5a) in which each piece
of the page table consumes exactly a page (no more, no less). We may end up wasting space as a
result. Draw and label a figure showing how a virtual address gets mapped into a physical address.
Show the format of the page table (complete with access checks), the virtual address, and physical
address. Minimize pieces of the page table that consume less than a page (and thus waste space).

Looking at the virtual address, we see that there are 32 – 13 bits = 19 bits of virtual page
number that we need to translate into a physical page number. Each page can hold 8KB/4 =
2048 PTEs. Thus, one level of the page table can translate 11 bits. Thus, our 19 bit address
can be divided into an 11 bit piece and an 8 bit piece. Thus, one level of our page table will only
have 256 entries in it, even though we could fit 2048. To avoid wasting too much space, we will
put the 256 entry chunk into the top-level of the page table (this way we waste a single chunk of
size [8KB - 256×4]=7168 bytes). If we put the small chunks at the lower-levels of the page
table, we would waste 2048 * 7168 bytes.

.

VWADPhysical Page Number (28 bits)

32 Bits

VWADPhysical Page Number (28 bits) VWADPhysical Page Number (28 bits)

32 Bits

Offset
(13 Bits)

VPage
(11 bits)

VPage
(8bits)

Offset
(13 Bits)

Physical Page
(28 Bits)

Unused
Space

Access
Check

Access
Check

Virtual Address

Physical Address

Offset
(13 Bits)

VPage
(11 bits)

VPage
(8bits)

Offset
(13 Bits)

Physical Page
(28 Bits)

Offset
(13 Bits)

Physical Page
(28 Bits)

Unused
Space

Access
Check

Access
Check

Virtual Address

Physical Address

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 18/21

Problem 5c[3pts]:
Consider a multi-level memory management scheme using the following format for virtual
addresses:

Virtual seg #
(2 bits)

Virtual Page #
(6 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(8 bits)

Offset
(12 bits)

Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(8 bits)

K
ernel

N
ocache

0 0

D
irty

U
se

W
riteable

V
alid

1) How big is a page? Explain.

We just have to look at the offset of 12 bits. Since 212= 4096, thus pages are 4096 bytes in size.

2) What is the maximum amount of virtual memory supported by this scheme? Explain

Since virtual addresses are 20 bits, the maximum amount of virtual memory is 220 =1MB

3) What is the maximum amount of physical memory supported by this scheme? Explain

Since physical addresses are 20 bits, the maximum amount of physical memory is 220= 1MB

Problem 5d[7pts]: Assume the memory translation scheme from (5c). Use the Segment Table and
Physical Memory table given on the next page to predict what will happen with the following
load/store instructions. Addresses are virtual. The return value for a load is an 8-bit data value or an
error, while the return value for a store is either “ok” or an error. If there is an error, make sure to
say which error. Possibilities are: “bad segment” (invalid segment), “segment overflow” (address
outside range of segment), or “access violation” (page invalid, or attempt to write a read only
page). A few answers are given:

Instruction Result Instruction Result

Load [0xC1015] 0x57 Store [0x52002] Segment Overflow

Store [0x43045] ok Load [0x04013] 0x44

Store [0xC1016] Access violation Store [0x81015] Bad Segment

Load [0xD2002] 0x10 Store [0x03010] Ok

Store [0xD2031] Access violation Load [0x13035] 0x59

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 19/21

 Segment Table (Max Segment=3)

Seg #
Page Table

Base
Max Page

Entries
Segment

State
0 0x02030 0x20 Valid
1 0x01020 0x10 Valid
2 0x01040 0x40 Invalid
3 0x04000 0x20 Valid

Physical Memory
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x00000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
0x00010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
0x01010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x01020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
0x01030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x01040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
0x02030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
0x02040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
0x02050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
0x04000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79
0x04010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x04020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
0x10000 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55
0x10010 A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A

….
0x11000 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x11010 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00
0x11020 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 11

….
0x31000 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x31010 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01
0x31020 03 01 25 36 47 58 69 7A 8B 9C AD BE CF E0 F1 02
0x31030 04 15 26 37 48 59 70 7B 8C 9D AE BF D0 E1 F2 03

….

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 20/21

 [This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 21/21

[This page left for scratch]

