
 Page 1/17

University of California, Berkeley
College of Engineering

Computer Science Division ⎯ EECS
Fall 2007

John Kubiatowicz

Midterm II
December 3rd, 2007

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Circle the
letters of CS162
Login

First: a b c d e f g h I j k l m n o p q r s t u v w x y z
Second: a b c d e f g h I j k l m n o p q r s t u v w x y z

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 20

2 25

3 20

4 35

Total

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 2/17

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 3/17

Problem 1: True/False [20 pts]
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS
(Answers longer than this may not get credit!). Also, answers without an explanation GET NO
CREDIT.
Problem 1a[2pts]: The Clock Algorithm requires hardware support for a “use” bit in the PTE.

 True / False
 Explain: When a hardware use bit is not available, the PTEs can be set to invalid when
they are unused, so that when the page is accessed, a trap will occur, and the operating system can set the
use bit in software.

Problem 1b[2pts]: The Aloha algorithm for broadcast networking permitted a new transmitter to
interrupt a message that was already partially transmitted.

 True / False
 Explain: Yes, because Aloha sends blindly without checking to see if there are any ongoing
communications (it relies on retransmissions after detecting garbled packets).

Problem 1c[2pts]: Memory mapped I/O devices cannot be accessed by user-level threads.

 True / False
 Explain: Memory-mapped I/O is accomplished using load/store instructions to a special
region of memory; a user-level thread can access this region if the user’s page table has a mapping for it.

Problem 1d[2pts]: It is possible to make Remote Procedure Calls (RPCs) with integer arguments
between clients that use big-endian integers and servers that use little-endian integers.

 True / False
 Explain: The marshalling/unmarshalling code of RPC will automatically convert between
network and host byte orders, thus accommodating any combination of host byte orders.

Problem 1e[2pts]: A dictionary attack could be used against a publicly readable password file that
contains encrypted passwords.

 True / False
 Explain: An attacker could encrypt every word in the dictionary and compare against the
encrypted passwords stored in the publicly readable file. Note that the “encryption” used the UNIX
password file acts as a one-way function.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 4/17

Problem 1f[2pts]: The rate of page faults in a virtual memory system can always be reduced by
adding more memory.

 True / False
 Explain: There are circumstances in which adding memory can actually increase the
number of faults. Specifically: Belady’s anomaly can come into play for a FIFO replacement policy and
certain access patterns.

Problem 1g[2pts]: Compulsory misses in a cache can be reduced with prefetching.

 True / False
 Explain: If the data is prefetched, it will already be in memory, so when that data is
accessed the first time, there will not be a compulsory miss.

Problem 1h[2pts]: A “memoryless” probability distribution provides a poor model for any real
sources of events.

 True / False
 Explain: When events from many independent sources are combined together the result
can often be well approximated by a memoryless distribution—even if the individual sources are not
memoryless.

Problem 1i[2pts]: Nonvolatile Ram (NVRAM) can improve the durability of a file system that
uses delayed writes.

 True / False
 Explain: Data that has been buffered for delayed writes can be stored in NVRAM. If a
power failure occurs before the data is written out to disk, the data can be recovered from the NVRAM.

Problem 1j[2pts]: Because of the 32-bit IP-V4 address space, it is impossible for more than 232
computers to communicate over the internet.

True / False
 Explain: Network Address Translation allows a single IP address to be used by several
computers.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 5/17

Problem 2: Virtual Memory and Paging [25pts]
Consider a two-level memory management scheme on 22-bit virtual addresses using the following
format for virtual addresses:

Virtual Page #
(7 bits)

Virtual Page #
(7 bits)

Offset
(8 bits)

Virtual addresses are translated into 16-bit physical addresses of the following form:

Physical Page #
(8 bits)

Offset
(8 bits)

Page table entries are 16 bits in the following format, stored in big-endian form in memory (i.e. the
MSB is first byte in memory).

Page Table Entry (PTE)

Physical Page #
(8 bits)

K
ernel O

nly

U
ncacheable

0 0

D
irty

U
se

W
rite

V
alid

Note that a virtual-physical translation can fail at any point if an incompatible PTE is encountered.
Two types of errors can occur during translation: “invalid page” (page is not mapped at all) or
“access violation” (page exists, but access was illegal).

Problem 2a[2pts]: Can you give a logical reason why the designer might have made the virtual
page # fields 7 bits each?

With a 7 bit virtual page #, the size of each page table is equal to the size of one page of memory.
27 entries/table * 2 bytes/entry = 28 bytes/table; each page is 28 bytes.
Grading: 2 points for recognizing that a page table fits exactly in one page; no other answer accepted.

Problem 2b[2pts]: What is the maximum amount of physical memory addressable by this system?
Can you think of a way to increase the amount of available physical memory without altering the
widths of the virtual addresses or PTEs?

16-bit byte-addressed physical addresses => 216 bytes of physical memory is addressable.
You can use the two zero bits in the page table entry to address a larger number of physical pages (210
physical pages). You can also increase the size of pages (by increasing offset width), or add registers for
segmentation.
Grading: 1 pt. for each part.

Problem 3c[2pts]: How many total bits of storage will each entry of the TLB consume (including
the tag and/or other fields)? Explain.

Simplest answer: TLB valid bit, 14-bit VPN, 16-bit PTE = 29 bits
Alternate: TLB valid, 14-bit VPN, 8-bit PPN (1/2 pt. each) , dirty, used, write (1/2 pt. for all 3) = 26 bits.
We ignored kernel only and uncacheable bits.

Grading: -1 if you include 8-bit offset. -1 if you stated just “extra bits.” -1/2 if you included zero bits in
the PTE. If you said 16 bits for PTE, we also required you to explicitly state TLB valid bit.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 6/17

Problem 2d[4pts]: The contents of physical memory are given on the next page. Assume that the
page-table base pointer = 0x2000, and that the CPU is in user-mode. Translate the following
virtual addresses. If there is an error during translation, make sure to say what the error is. Errors
can be either “invalid page” or “access violation”. Two answers are give. Hint: be careful to look
at the virtual address format!

Virtual Addr Physical Addr Virtual Addr Physical Addr
0x10123 0x0023 0x38256 0x0056
0x60423 Invalid Page 0x10F00 Invalid page
0x28156 0x5156 0x00278 0x3278

Grading: 1pt each, no partial credit

Problem 2e[6pts]: Consider the same multi-level memory management scheme. Once again,
assume that the page-table base pointer = 0x2000 and that the CPU is in user-mode. Please return
the results from the following load/store instructions. Addresses are virtual. The return value for
load is an 8-bit data value or an error, while the return value for a store is either “ok” or an error.
For errors, please specify which type of error (either “invalid page” or “access violation”). When
the result is not an error, indicate the new value for the PTE after the access is complete. The first
two results are given:

Instruction Return Value New PTE
Load [0x380FE] 0xEE 0x3005
Store [0x380FE] Access violation ------
Load [0x41015] Access violation ------
Load [0x00115] 0x57 0x3105
Store [0x08310] OK 0x000F
Load [0x10102] 0x10 0x0007
Store [0x10731] Access violation ------
Load [0x62345] Invalid page ------

Note: keep in mind that we are accessing things at user-level. This fact results in the “access
violation” for Load[0x41015], for instance. Also, for Store [0x08310], we accepted “access
violation,” which is the result if you look at the write bit in the top level page table.
Grading: ½ pt. each box for non-errors, 1 pt. each row if error.

Problem 2f[2pts]: Suppose that there are two processes loaded on the ready queue. Process A has
page-table base pointer = 0x2000. Process B has page-table base pointer = 0x2F00. Give the
physical address of a data page that is shared read-write (RW) between processes A and B? Is this
data page mapped at the same place in the virtual address spaces of the two processes? Explain.

Page 0x51 (addresses 0x5100-0x51FF) are shared RW between the two processes.

The page is mapped at different places in the two address spaces, as they appear at different offsets into
the top level page tables.

Grading: 1 pt. for the correct page, ½ pt. for “No”, ½ pt. for explanation. Partial credit was given for
0x2800 (which is not a data page, but the second-level page table shared by the two processes.)

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 7/17

Virtual Address Format
Virtual Page #

(7 bits)
Virtual Page #

(7 bits)
Offset
(8 bits)

Page Table Entry (PTE)

Physical Page #
(8 bits)

K
ernel

N
ot

C
acheable

0 0

D
irty

U
se

W
rite

V
alid

Physical Memory
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x0000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
0x0010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
0x1010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x1020 40 07 41 06 30 06 31 07 00 07 00 00 00 00 00 00

….
0x2000 21 01 22 01 25 01 22 01 2F 03 28 03 30 03 22 03
0x2010 40 81 41 81 42 81 43 83 00 00 00 00 00 00 00 00

….
0x2100 30 05 31 01 32 03 33 07 34 00 35 00 36 00 37 00
0x2110 38 00 39 00 3A 00 3B 00 3C 00 3D 00 3E 00 3F 00

….
0x2200 30 01 31 83 00 01 00 0F 04 00 05 00 06 00 07 00
0x2210 08 00 09 00 0A 00 0B 00 0C 00 0D 00 0E 00 0F 00

….
0x2500 10 01 00 03 12 85 13 05 14 05 15 05 16 05 17 05
0x2510 18 85 19 85 1A 85 1B 85 1C 85 1D 85 1E 85 00 00

….
0x2800 50 01 51 03 00 00 00 00 00 00 00 00 00 00 00 00

….
0x2F00 60 03 28 03 62 00 63 00 64 03 65 00 66 00 67 00
0x2F10 68 00 69 00 00 00 00 00 00 00 00 00 00 00 00 00
0x2F20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

….
0x30F0 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x3100 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x3110 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01

….
0x4000 30 00 31 06 32 07 33 07 34 06 35 00 43 38 32 79
0x4010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x4020 23 87 20 07 00 06 62 08 99 86 28 03 48 25 34 21

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 8/17

Problem 2g[4pts]: For the following problem, assume a hypothetical machine with 4 pages
of physical memory and 7 pages of virtual memory. Given the access pattern:

A B C D E F C A A F F G A B G D F F
Indicate in the following table which pages are mapped to which physical pages for each of the
following policies. Assume that a blank box matches the element to the left. We have given the
FIFO policy as an example.
Access→ A B C D E F C A A F F G A B G D F F

1 A E B
2 B F D
3 C A F

FIFO

4 D G
1 A D
2 B D
3 C G D

M
IN

4 D E F
1 A E G
2 B F D
3 C B

LR
U

4 D A F

For MIN, we accepted the final D in any of the first three pages.
Grading: 2 pts. each for MIN and LRU; -1 for each error.

Problem 2i[3pts]: What is a precise exception and why would we want a software TLB fault to
generate a precise exception?

A precise exception is one where the state of the machine is preserved as if the program
executed up to the offending instruction. All previous instruction have completed, and the
offending instruction and all following instructions act as if they had not even started.

We would like the hardware to generate a precise exception on a software TLB fault because it
makes implementation of the fault handler easier. The fault handler simply restarts execution at
the offending instruction (easy). It does not need to figure out the state of the system and
potentially rollback or complete execution (in software) of partially completed instructions.

Grading: 1.5 pt. for each part.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 9/17

Problem 3: File Systems [20pts]
Please keep your answers short (one or two sentences per question-mark). We may not give credit
for long answers.

Problem 3a[2pts]: What is spatial locality and which type of file access pattern exploits spatial
locality?

Spatial locality is accessing a location that is close to or next to recently accessed location. Sequential
access of a file exploits spatial locality.

Grading: 1 point for definition and 1 point for access pattern.

Problem 3b[2pts]: Which component of disk access time is the disk scheduling algorithm trying to
minimize?

The disk scheduling algorithm is attempting to minimize overall time wasted to moving the disk arm (i.e.
it optimizes seek time).

Grading: 2 point for seek time or 1 point for some reasonable explanation of another component.

Problem 3c[3pts]: How does a Journaled file system improve the durability of data on disk? Give
two reasons why a journaled file system would have higher performance than a file system that
forced every block to the disk immediately, while at the same time giving the same or better
durability.

Journaled file systems keep a log of changes to the file system; this log is forced to disk so that if a crash
occurs the file system can recover all the transactions that haven’t been committed properly to the disk.

1) Since only modifications are forced to the log, the total traffic forced to disk might be a lot
smaller than if every modified block must be sent to disk.

2) The log has great spatial locality (written on a set of consecutive sectors. Consequently, it can
be forced to disk with little or no head movement.

3) When the file system is actually updated, the scheduler can order requests for higher efficiency –
since the correctness depends on the log, not the order of updates to the rest of the disk.

Grading: 1 point for explanation of Journaled and 1 point each for reasons.

Problem 3d[2pts]: Name at least two ways in which the buffer cache is used to improve
performance for file systems.

1) Reads can be from cache instead of disk
2) Allow delayed writes to disk, thereby permitting better disk scheduling an/or temporary files to be

created and destroyed without even being written to disk.
3) Used to cache kernel resources such as disk blocks and name translations

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 10/17

Problem 3e[2pts]: The Fast File System (FFS) of Berkeley 4.2 Unix utilized “Skip Sector
Positioning” to improve performance. Explain what “Skip Sector Positioning” is and why this
optimization may no longer be important.

Skip sector positioning placed successive sectors of a file on every other sector (or with multiple sectors
between). This helps to avoid the situation in which the processor must do so much work after reading
each sector that it misses the next sector and has to wait for a complete revolution. Modern disk
controllers have track buffers that keep data from a complete track in memory, thereby eliminating the
need for sector interleaving

Problem 3f[3pts]: The Network File System (NFS) uses a “stateless” protocol between clients and
servers. What does this mean? Name one advantage and one disadvantage of stateless filesystem
protocols.

All the requests to the NFS server are self-contained: they include all the arguments required for
execution and do not assume that information is maintained between successive server requests.

Advantage: Server can crash and restart transparently to the client.
Disadvantage: Cannot track which clients are caching data, thus making it difficult to get clean
caching semantics.

Grading: 1 point for explanation, 1 for advantage and 1 for disadvantage.

Problem 3j[6pts]: Suppose that a new disk technology provided access times that are of the same
order of magnitude as memory access times. What, if anything, must be changed in the following
three OS components to take advantage of the quicker access time? If something doesn’t change,
be very specific why it doesn’t change. If it will change, contrast these changes with current
implementation and be as specific as possible in your answers (i.e. identify what would change and
why).

1. Process Scheduler
Scheduler deals with processes at task level with arrival and run times so while run time might
change the scheduler does not need change.

2. Memory Management
Write through instead of write back since it’s cheaper to go to disk. Less need to prefetch and
instead save on the cost of getting unused memory location. Do more on-demand paging instead of
having to rely on predicting access pattern and missing. Mainly, allows memory management to
balance hit cost and miss cost instead of focusing on increasing hit rates only.

3. Device Driver for the new disk

Use polling instead of interrupt for new disk device driver since it will be in heavy use due to lower
access. Or no change to the structure of the device driver from OS point of view.

Grading: 2 points for good reasoning for change or no change with some modification if there is a change.
1.5 points for good explanation of the choice to modify or not. 1 point for incomplete reasoning but in the
right direction.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 11/17

[This page intentionally left blank]

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 12/17

 Problem 4: Network File Server [35 pts]

The above figure illustrates a network in which one client interacts with a server to display

video files. Each link is characterized by its Bandwidth, one-way Latency (for the first bit to arrive),
and Maximum Transfer Unit (MTU) in bytes. All links are full-duplex (can handle traffic in both
directions at full bandwidth). Each router is highly pipelined and will start forwarding a packet to
an output port 1ms after it receives the first bit of the packet. Assume that no packets will be lost.

Both the video player (on the client) and file server run at user level. To display a video, the
client opens a TCP connection to the server, sends multiple requests, then waits for the response.
Assume that the time to setup the connection is negligible relative to the overall viewing time.

To send data over the network, a user-level process issues a write system call on a socket. The
OS will copy the data to a kernel buffer (inside the socket). Then, the TCP routines generate
headers (by copying them from templates) and use DMA to copy the completed packet to the
network controller. Immediately after receiving all of the data for a packet, the network controller
sends it. Afterwards, it generates an interrupt (one per packet).

At the destination, the network controller DMAs the packet to memory, then interrupts the
CPU. Subsequently, the TCP routines transmit an acknowledgement (ACK) back to the sender. For
simplicity, you may treat ACKs as if they are zero bytes long. After sending an ACK, the OS copies
the received data into user-level buffer of the receiving user-level process.

A user-level process reads data from the disk by executing a read() system call with a user-level
buffer for the results. The OS splits read requests into chunks that consist of sequential blocks on
the same track and that are 16 blocks or less in size. It queues requests in the device driver request
queue (DDRQ). Whenever the disk controller finishes reading a chunk of data into kernel memory,
the controller generates an interrupt, causing the OS to dequeue the next request from the DDQ.
The OS then copies data from kernel memory into the user’s buffer and returns from read().

Note that 1 Mbps = 106 bits
And that MTU is measured in bytes

Internet Bandwidth: 3.7 Mbps
Latency: 96 ms, MTU: 296

Bandwidth: 1000Mbps
Latency: 1ms, MTU: 1500

File
Server

Router Properties:
• Latency: 1ms, full throughput supported

Client or Server Properties:
• Time to process an interrupt, Tint=10 μs
• Time to copy, generate, or DMA one byte,

Tcopy= 10 ns

Server Disk Properties:
• 750GB in size
• 10000 RPM, Data transfer rate of 50 Mbytes/s

(50 × 106 bytes/sec)
• Average seek time of 4ms
• ATA Controller with 1ms latency
• A block size of 4Kbytes (4096 bytes)

Router
1

Client
(player)

Bandwidth: 100Mbps
Latency: 1ms, MTU 1500

Router
2

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 13/17

Problem 4a[3pts]: What is the maximum amount of data that the client or server can send in each
packet while avoiding fragmentation along the way? Remember that the TCP+IP header is 40
bytes. Explain.

Since the minimum MTU along the path is 296, and the header is 40 bytes, the maximum amount of
data that the client or server can send in each packet is 296-40 = 256 bytes.
Grading:1pt for minimum MTU, 1 pt for subtracting header, 1 for some explanation

Problem 4b[2pts]: Explain how the client or server could automatically discover the answer to 4a:
The sending end starts with large packets with the “no fragment” flag set in the header and slowly
reduces the size until packets start making it through without being dropped.
Grading: 1 pt for plausible endpoint-generated query, 1 pt for mentioning no frag bit

Problem 4c[2pts]: Under ideal circumstances (and ignoring interrupt and copying overheads and
window sizes), what is the maximum data bandwidth that could be sent from the server to the client
without dropping packets, assuming that the server utilizes the mechanism in 4b? Explain.

Assuming that we use the maximum packet size from 4a (i.e. 296) which contains 256 bytes of data
in it, we can compute the fraction of the 3.7 Mbps that we have in the middle link as: 3.7 Mbps μ
(256/296) = 3.2 Mbps
Grading: 1pt identifying bottleneck bandwidth, 1 pt for scaling by correct fraction

Problem 4d[3pts]: Assume that a maximal sized packet (as in 4a) is sent from the TCP send buffer
of the server to the TCP receive buffer of the client. Compute the total roundtrip latency from the
point at which the server invokes the device driver to send the packet until it receive the ACK via
an interrupt. Hint: don’t forget the interrupt at the receiving side and the DMA mechanism into and
out of the network.

Note that the fact that the router is pipelined (see description above) implies that the router begins
routing toward the output port even before it has received the complete packet. This simplifies things so
that we only have to track latencies of packets through the router as 1ms. At the receiving side, we
technically need to wait for the packet to be completely received before we start DMAing it into kernel
memory.

Also, we said that the ACK is zero length. If this is truly zero, then there is no header
generation/transmission latency. Otherwise, we need to generate headers. There are two different
options here: Ack latency (zero) or Ack latency (header) here.

We translate to ms here. 10ns=10-5ms, 10μ = 10-2ms. 1Gps=1012bits/ms 100Mbps=1011bits/ms

Message latency = [Genheader+DMAkernel→network]+[Link2+Route2+Linkmiddle+Route1+Link1]+

 [Receiveserver+DMAnetwork→kernel+Intmessage]
 =(40μ10-5ms+296μ10-5ms] + [1ms+1ms+96ms+1ms+1ms]+
 [(296μ8 bits)/(1011bits/ms)+296μ10-5ms+10-2ms] ≅ 100.02ms

Ack latency (zero) = [Link2+Route2+Linkmiddle+Route1+Link1]+Intack = 100.01 ms
Ack latency(header)= [Genheader+DMAkernel→network]+Ack latency(zero)+

 [Receiveclient+DMAnetwork→kernel]
 =[40μ10-5ms+40μ10-5ms]+100.01ms+
 [(40μ8)/(1012bits/ms)+40μ10-5ms] ≅ 100.01ms

Total Answer ≅ 200.03ms
Grading: 1 point on right track, -2 for missing all network components, -1 point for missing components
of basic 200ms roundtrip, -½ for missing DMAs, -½ for missing ints, -½ for interrupt on send (not in
critical path), -½ for copy into kernel (already in TCP buffer), -½ math error

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 14/17

Problem 4e[3pts]: What TCP window size is necessary to achieve the bandwidth of 4c without
dropping packets in the network? Use simple constants and values that you computed for 4a-4d.
Explain. Make sure that you correct for units.

What is needed here is the bandwidth-latency product, where the latency is the roundtrip latency.
The result will be the total amount of data that needs to be “in the network” before reception of the
first ACK. Here, the window size is in data bytes (not including header) so, we use the data
bandwidth, not total bandwidth. Also, we must correct for the fact that (4d) was computed in ms.
Notice how all of the units cancel out properly! (we want bytes)

Window size ≅ (4c)μ(4d)μ(10-3s/ms) / (8bits/byte)
≅ (3.2μ106bit/s)μ(200.03ms)μ (10-3s/ms)μ (0.125 bytes/bit)
≅ 80012 bytes

Grading: -1 use incorrect bandwidth (unless consistent with 4c), -1 missed converting bits to bytes
(unless give answer with units of “b,” which means bits, -1 for not following directions (using only
values from 4a through 4d or simple constants).

Problem 4f[6pts]: Suppose that video files are laid out in 64K (65536 bytes) chunks on the disk
(i.e. 64K in successive sectors on a track). Compute the overhead for reading such a 64K chunk
from a random place on the disk. Assume that the disk controller automatically DMAs the data to
kernel memory in a fashion that is overlapped with reading it from the disk (so that you do not have
to worry about DMA for this operation). After finishing, the controller generates an interrupt; the
interrupt routine may submit another request to the controller (if one is queued on the DDRQ).
Assume the disk parameters given above (repeated here):

• 750GB in size
• 10000 RPM, Data transfer rate of 50 Mbytes/s (50 × 106 bytes/sec)
• Average seek time of 4ms
• ATA Controller with 1ms controller initiation time
• A block size of 4Kbytes (4096 bytes)

What is the total time to read 64K chunk from a random place on the disk into memory including
the interrupt? Hint: there are 5 terms here including the interrupt!

 Timeserver = Timecontroller+Timeseek+Timerotate+Timetransfer+TimeInt
 = 1ms + 4ms +

 ½ [60 s/min μ 1000 ms/s / 10000 rev/min] +
 65536 bytes / [(50 × 106 bytes/sec) μ 0.001 sec/ms] + 0.01 ms
 = 8.01ms + 1.31ms = 9.32ms

Grading: 1 pt for each of 5 terms, 1 pt for calculation (can lose if have a unit conversion problem,
like forgetting to convert from sec to ms or something similar, other reasons).

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 15/17

Problem 4g[3pts]: Now, assume that the video player works by sending requests for 64KB
(=65536 bytes) at a time to the video server. Assuming that these requests are pipelined for
maximum bandwidth, at what rate must it send these requests to achieve the bandwidth of 4c?
 Numreq/client = (3.2 μ 106 bits / sec μ 0.125 bytes/bit) / 65536 bytes/req = 6.1 req/sec

Grading: 1 pt if mostly on track, -1 pt for forgetting bits/byte conversion, -1 pt neglecting to use
value from 4c.

Problem 4h[4pts]: Compute the total processor overhead for satisfying a 64K request at the server.
Processor overhead includes (1) interrupts, (2) header generation overhead and (3) copying
overhead. Note that generating a byte of header is as expensive as copying. Processor overhead
does not include DMA or disk controller actions since these are overlapped with the CPU. The data
portion of a request message is 16 bytes.

We translate to ms here. 10ns=10-5ms, 10μ = 10-2ms. 1Gps=1012bits/ms 100Mbps=1011bits/ms

Overhead = Request[Intrequest+Copyrequest] +Disk[Intdisk +Copyfilesystem→user]+
 Send[Copyuser→socket + 256 μ Genheader +256μIntnetwork]+ Acks[256μIntnetwork]

 = Request[10-2 + 16 μ 10-5] + Disk[10-2 + 65536 μ 10-5] +
 Send[65536 μ 10-5 + 256 μ (40 μ 10-5) + 256μ10-2] +Acks [256μ10-2]
 = 0.01016ms + 0.75536ms + 3.31776ms + 2.56ms = 6.6438ms ≅ 6.64ms

Since TCP might generate less than one ack/packet, we can say that the result is at least > 4.08ms (the
above number without the ACK interrupt term of 2.56ms).

Note: We don’t include the interrupt/header generation for the Ack to the request because Acks will
likely ride the data packets going back to the client. We didn’t take off points if you included these.

Grading: we didn’t require the ack interrupts, although they are technically overhead. Roughly, we gave
1 point for Request overhead, 1 pt for Disk overhead (especially copy from kerne→user), 2 points for
Send, divided into 1 point for user→ kernel copy for send and 1 point for packet generation of headers
and packet interrupts.

Problem 4i[4pts]: Suppose that we wanted to handle 300 clients each at a request rate as given in
(4g). Assume that multiple clients connect through network resources that are independent up to
router #2. Each client would have its own user-level process working on its behalf. How many disks
would we need to handle this rate? What else would need to be upgraded to handle this rate?

Number of requests / sec that disk can handle: (1000 ms / s) / (9.32 ms / req) = 107.3 req/s
Number of clients/disk = (107.3 req/sec) / (6.1 req/s/client) = 17.6 clients
300 clients / 17.6 clients/disk = 17.05 disks ⇒ we need 18 disks to meet the full demand.

Would need to upgrade network:
 300 clients μ 3.7 Mbps/client = 1.11μ109 bps > 1Gbps!
Would need to upgrade processor:

Since overhead/req = 6.64ms, 300clients μ 6.1req/client = 18300 req/s
⇒ request rate would require .00664 μ 18300 = 121sec of processor time / sec!

Grading : 3 points for computing number of disks, 1 point for pointing out and justifying one upgrade.
-1 pt for wrong disk BW (like simply using 50MBps) ; -1pt for computation error ;
-½ point for naming an upgrade without giving justification ; Also, a couple of people said that
memory would need to be upgraded, however, the memory requirements of this application are
minimal – and you would have no way to know how much memory was there to start with.

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 16/17

Problem 4j[5pts]: Returning to our single-disk server, assume that 15 clients connect through
network resources that are independent up to router #2. Each client has its own user-level
process working on its behalf. Assume that all 15 clients send requests at a rate of (4g). If the
disk response distribution can be described with C=1.5 and the aggregate network request rate
can be described as exponential, what is the average length of the disk device driver request
queue (DDRQ)? Hint: the service time for the disk is the time between requests to the disk
controller when the DDRQ is full. Possibly useful formulas include:

Mean Service: ∑=
=

n

in 1 iserver T1T Variance: ()∑ =
−=

n

i serveri TT
n 1

22 1σ

M/G/1 queue: ⎟
⎠
⎞

⎜
⎝
⎛
−

×⎟
⎠
⎞

⎜
⎝
⎛ +

×=
u

uC
12

1TT serverq Little’s law: Lq=λ × Tq

 Solution: The important thing about solving this problem is figuring out what equations to

use and which numbers to plug in. Since we are looking at the DDRQ queue, the
service time is the time for one chunk (64KB) to be grabbed from the disk and to
generate an interrupt. This service time is exactly what we computed in (4f). The
processor overhead from (4h) is overlapped with these hardware-generated
numbers, so is not included. Note that we can get average service time directly
from (4f), so don’t need to use the formula for “Mean Service” given above.

 The arrival rate (λ) includes 15 clients worth of requests, so is the result of

multiplying (4g) by 15.

 λ = Numclients μ Numreq/client = 15 × (4g) = 15 x 6.1req/sec = 91.5req/sec
 Timeserver = (4f) = 9.32ms/req (overhead from 4h is overlapped and not counted)
 u = l μ Timeserver

 = 91.5req/sec μ 9.32ms/req μ 0.001 s/ms ≅ 0.853 (No UNITs!)
 Tq = (9.32ms/req μ 0.001s/ms) μ ½(1+1.5)μ[0.853/(1-0.853)]
 = 0.0676
 Lq = (15μ6.1)μ 0.0676 = 6.1854

 ⇒ Average queue length = 6.1854

Grading: 1 point for identifying formulas that get you all the way to the answer; 1pt for λ;
1pt for u; 1pt for Timeserver; 1 point for calculation.

Note that we gave you credit for using numbers that you computed previously, even if they
were incorrect. However, we gave -1pt if you computed a value for u that was > 1 but didn’t
say anything about it (i.e. didn’t point out that you must have made a mistake).

Also, you could use -1pt for failing to correct for units (i.e. ms/s etc).

CS 162 Fall 2007 Midterm Exam II December 3rd, 2007

 Page 17/17

 [Scratch Page (feel free to remove)]

