
 Page 1/19

University of California, Berkeley
College of Engineering

Computer Science Division ⎯ EECS

Fall 2006

John Kubiatowicz

Midterm I
October 11th, 2006

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 20

2 24

3 19

4 20

5 17

Total 100

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 2/19

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 3/19

Problem 1: Short Answer [20pts]

Problem 1a[2pts]: What is a virtual machine?

Problem 1b[2pts]: Does a cyclic dependency always lead to deadlock? Why or why not?

Problem 1c[2pts]: What are exceptions? Name two different types of exceptions and give an
example of each type:

Problem 1d[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for
different tasks). Be explicit in your answers.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 4/19

Problem 1e[3pts]: For each of the following thread state transitions, say whether the transition is
legal and how the transition occurs or why itcannot. Assume Mesa-style monitors.

1). Change from thread state BLOCKED to thread state RUNNING

2). Change from thread state RUNNING to thread state BLOCKED

3). Change from thread state RUNNABLE to thread state BLOCKED

Problem 1f[4pts]: Consider the Dining Lawyers problem, in which a set of lawyers sit around a
table with one chopstick between each of them. Let the lawyers be numbered from 0 to n-1 and be
represented by separate threads. Each lawyer executes Dine(i), where “i” is the lawyer’s
number. Assume that there is an array of semaphores, Chop[i] that represents the chopstick to the
left of lawyer i. These semaphores are initialized to 1.

 void Dine(int i) {
 Chop[i].P(); /* Grab left chopstick */
 Chop[(i+1)%n].P(); /* Grab right chopstick */
 EatAsMuchAsYouCan();
 Chop[i].V(); /* Release left chopstick */
 Chop[(i+1)%n].V(); /* Release right chopstick */
 }

This solution can deadlock. Assume that it does. List the four conditions of deadlock and explain
why each of them is satisfied during the deadlock:

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 5/19

Problem 1g[3pt]: Pick one of the above four conditions and rewrite the code to eliminate it.
Identify the condition you chose carefully and explain why your code doesn’t deadlock:

Problem 1h[2pts]: The Banker’s algorithm is said to keep the system in a “safe” state. Describe
what a “safe” state is and explain how the Banker’s algorithm keeps the system in a safe state.
Keep your answer short.

EXTRA CREDIT
Problem 1i[2pts]: Describe what “core” memory is and how it looks.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 6/19

Problem 2: Synchronization [24pts]
Assume that you are programming a multiprocessor system using threads. In class, we talked about
two different synchronization primitives: Semaphores and Monitors.

The interface for a Semaphore is as follows:
 public class Semaphore {
 public Semaphore(int initialValue) {
 /* Create and return a semaphore with initial value: initialValue */
 …
 }
 public P() {
 /* Call P() on the semaphore */
 …
 }
 public V() {
 /* Call V() on the semaphore */
 }
 }
As we mentioned in class, a Monitor consists of a Lock and one or more Condition Variables. The
interfaces for these two types of objects are as follows:

 public class Lock { public class CondVar {
 public Lock() { public CondVar(Lock lock) {
 /* Create new Lock */ /* Creates a condition variable
 … associated with Lock lock. */
 } …
 }
 public void Acquire() { public void Wait() {
 /* Acquire Lock */ /* Block on condition variable *’/
 … …
 } }
 public void Release() { public void Signal() {
 /* Release Lock */ /* Wake one thread (if it exists) */
 … …
 } }
 } public void Broadcast() {
 /* Wake up all threads waiting on cv*/
 …
 }
 }
Monitors and Semaphores can be used for a variety of things. In fact, each can be implemented with
the other. In this problem, we will show their equivalence.

Problem 2a[2pts]: What is the difference between Mesa and Hoare scheduling for monitors?

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 7/19

Problem 2b[5pts]: Show how to implement the Semaphore class using Monitors (i.e. the Lock and
CondVar classes). Make sure to implement all three methods, Semaphore(), P(), and V(). None of
the methods should require more than five lines. Assume that Monitors are Mesa scheduled.

 public class Semaphore {

 public Semaphore(int initialValue) {

 }
 public P() {

 }
 public V() {

 }
 }
Problem 2c[3pts]: Show how to implement the Lock class using Semaphores. Make sure to
implement the Lock(), Acquire(), and Release() methods. None of the methods should require
more than five lines.

 public class Lock {

 public Lock() {

 }
 public void Acquire() {

 }
 public void Release() {

 }
 }

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 8/19

Problem 2d[2pts]: Explain the difference in behavior between Semaphore.V() and
CondVar.Signal() when no threads are waiting in the corresponding semaphore or condition
variable:

Problem 2e[12pts]: Show how to implement the Condition Variable class using Semaphores (and
your Lock class from 2c). Assume that you are providing Mesa scheduling. Be very careful to
consider the semantics of CondVar.Signal() as discussed in (2d). Hint: the Semaphore interface
does not allow querying of the size of its waiting queue; you may need to track this yourself. None
of the methods should require more than five lines.

 public class CondVar {

 public CondVar(Lock lock) {

 }
 public void Wait() {

 }
 public void Signal() {

 }
 public void Broadcast() {

 }
 }

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 9/19

Problem 3: Critical Sections [19 pts]
For each of the following techniques for synchronization, assume that there are two threads
competing to execute a critical section. Further, assume that:

1. A critical section is “protected” if only one thread can enter the critical section at a time.
2. The synchronization is “fair” if, when each thread attempts to acquire the critical section

repeadedly, then each thread will enter the critical section about the same number of times.
Note: Assume that all flags start out “false”. Also assume that store is atomic.

Synchronization technique #1: Suppose each thread does the following:

 1. while (flag == true)
 2. do nothing;
 3. flag = true;
 4. Execute Critical Section;
 5. flag = false;

Problem 3a[2pts]: Will this protect the critical section? If “yes”, explain why. If “no”, give an
example interleaving that will fail to protect the critical section.

Problem 3b[2pts]: Assume this code protects the critical section. Is this code “fair”? Explain.

Synchronization technique #2: Suppose we have different code for each thread:
 THREAD A THREAD B
 A1. flag_A = true; B1. flag_B = true;
 A2. while (flag_B == true) B2. if (flag_A == false)
 A3. do nothing; B3. Execute Critical Section;
 A4. Execute Critical Section; B4. flag_B = false;
 A5. flag_A = false;

Problem 3c[2pts]: Will this protect the critical section? If “yes”, explain why. If “no”, give an
example interleaving that will fail to protect the critical section.

Problem 3d[2pts]: Assume this code protects the critical section. Is this code “fair”? Explain.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 10/19

Synchronization technique #3: Suppose each thread does the following:

 1. while (TestAndSet(flag) == false)
 2. do nothing;
 3. Execute Critical Section;
 4. flag = false;

Problem 3e[3pts]: Will this protect the critical section? If “yes”, explain why. If “no”, explain
and explain how to fix it.

Problem 3f[2pts]: Assume the above code (or your fixed version). Will this code be “fair”?
Explain.

Synchronization technique #4: Suppose we have different code for each thread:
 THREAD A THREAD B
 A1. flag_A = true; B1. flag_B = true;
 A2. while (flag_B == true) B2. while (flag_A == true)
 A3. do nothing; B3. do nothing;
 A4. Execute Critical Section; B4. Execute Critical Section;
 A5. flag_A = false; B5. flag_B = false;

Problem 3g[3pts]: Will this protect the critical section? If “yes”, explain why. If “no”, explain
and explain how to fix it. Note that this question is only about protecting the critical section!

Problem 3h[3pts]: Explain why this code (or your fixed version) would not be a particularly good
mechanism for synchronizing threads A and B. (hint: imagine that threads A and B repeatedly try
to acquire the critical section). After describing the problem, explain how to fix the problem by
replacing the “do nothing” with no more than three lines inside each while loop above.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 11/19

Problem 4: Scheduling [20pts]

Problem 4a[2pts]:
Describe one way to predict the burst runtime (time between I/O operations) for a thread.

Problem 4b[3pts]:
What is priority inversion? Explain how a priority scheduler could be modified to avoid priority
inversion.

Problem 4c[3pts]:
Explain what a multi-level feedback scheduler is and why it approximates SRTF.

Problem 4d[2pts]: Explain how to fool the multi-level feedback scheduler’s heuristics into giving
a long-running task more CPU cycles.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 12/19

Problem 4e[5pts]:
Here is a table of processes and their associated arrival and running times.

Process ID Arrival Time CPU Running
Time

Process 1 0 2
Process 2 1 6
Process 3 4 1
Process 4 7 4
Process 5 8 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume
that context switch overhead is 0 and that new processes are added to the head of the queue except
for FCFS, where they are added to the tail.

Time Slot FCFS SRTF RR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 13/19

Problem 4f[3pts]:
For each process in each schedule above, indicate the queue wait time and completion time
(otherwise known as turnaround time, TRT). Note that wait time is the total time spend waiting in
queue (all the time in which the task is not running), while TRT is the total time from when the
process arrives in the queue until it is completed.

Scheduler Process 1 Process 2 Process 3 Process 4 Process 5

FCFS wait
FCFS
TRT

SRTF wait
SRTF
TRT

RR wait

RR TRT

Problem 4g[2pts]:
Assume that we could have an oracle perform the best possible scheduling to reduce average wait
time. What would be the optimal average wait time, and which of the above three schedulers would
come closest to optimal? Explain.

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 14/19

[This page intentionally left blank]

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 15/19

Problem 5: Address Translation [17 pts]
Problem 5a[2 pts]:
Explain how Address Translation can protect processes from one another.

Problem 5b[3pts]:
Suppose we have a memory system with 32-bit virtual addresses and 4 KB pages. If the page table
is full (with 220 pages), show that a 20-level page table consumes approximately twice the space of
a single level page table. Hint: try drawing it out and summing a series.

Problem 5c[2pts]:
Problem (5b) showed that, in a full page table, increasing the number of levels of indirection
increases the page table size. Show that this is not necessarily true for a sparse page table (i.e. one
in which not all entries are in use).

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 16/19

Consider a multi-level memory management scheme using the following format for virtual
addresses:

Virtual seg #
(4 bits)

Virtual Page #
(8 bits)

Offset
(8 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(8 bits)

Offset
(8 bits)

Problem 5d[4pts]: For the following Virtual Addresses, translate them into Physical Addresses.
Use the Segment Table and Physical Memory table given on the next page. Segment entries point
to page tables in memory. A page table consists of a series of 16 bit page table entries (PTEs). The
format of a PTE is given on the next page. Briefly, the first byte of the PTE is an 8-bit physical
page #, and the second byte is an 8-bit flags field with one of the following values:

0x00 (Invalid), 0x06 (Valid, RO), 0x07 (Valid, R/W).

 If there is an error during translation, make sure to say what the error is. Errors can be
 “bad segment error” (undefined or invalid segment), “segment overflow error” (address outside
range of segment), or “access violation error” (page invalid, or attempt to write a read only (RO)
page). Two answers are given:

Virtual Addr Physical Addr Virtual Addr Physical Addr
0x10123 0x4123 0x31056
0x33423 Segment overflow 0x10400
0x20456 0x00278

Problem 5e[6pts]: Consider the same multi-level memory management scheme. Please return the
results from the following load/store instructions. Addresses are virtual. The return value for load
is an 8-bit data value or an error, while the return value for a store is either “ok” or an error. For
errors, please specify which type of error (from the above set). Two answers are given:

Instruction Result Instruction Result
Load [0x30115] 0x57 Store [0x00310]
Store [0x30116] Access violation Load [0x31202]
Load [0x51015] Store [0x10231]
Load [0x00115] Load [0x12345]

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 17/19

 Virtual Address Format
Virtual seg #

(4 bits)
Virtual Page #

(8 bits)
Offset
(8 bits)

Segment Table (Max Segment=3)

Seg #

Page Table
Base

Max Page
Entries

Segment
State

0 0x2030 0x20 Valid
1 0x1020 0x10 Valid
2 0x3110 0x40 Invalid
3 0x4000 0x20 Valid

Page Table Entry

First Byte Second Byte

Physical Page
Number

0x00 = Invalid
0x06 = Valid, RO
0x07 = Valid, R/W

Physical Memory

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x0000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
0x0010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
0x1010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x1020 40 07 41 06 30 06 31 07 00 07 00 00 00 00 00 00

….
0x2000 02 20 03 30 04 40 05 50 06 60 07 70 08 80 09 90
0x2010 0A A0 0B B0 0C C0 0D D0 0E E0 0F F0 10 01 11 11
0x2020 12 21 13 31 14 41 15 51 16 61 17 71 18 81 19 91
0x2030 10 06 11 00 12 07 40 07 41 07 00 00 00 00 00 00

….
0x30F0 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x3100 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x3110 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01
0x3120 03 06 25 36 47 58 69 7A 8B 9C AD BE CF E0 F1 02
0x3130 04 15 26 37 48 59 70 7B 8C 9D AE BF D0 E1 F2 03

….
0x4000 30 00 31 06 32 07 33 07 34 06 35 00 43 38 32 79
0x4010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x4020 23 07 20 07 00 06 62 08 99 86 28 03 48 25 34 21

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 18/19

 [This page intentionally left blank]

CS 162 Fall 2006 Midterm Exam I October 11, 2006

 Page 19/19

[Scratch Sheet (Feel free to remove)]

