
University of California, Berkeley
College of Engineering

Computer Science Division ⎯ EECS

Fall 2005

John Kubiatowicz

Midterm I
October 12th, 2005

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 25

2 17

3 20

4 18

5 20

Total

 Page 1/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

 Page 2/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 1: Short Answer

Problem 1a[2pts]: Suppose a thread is running in a critical section of code, meaning that it has
acquired all the locks through proper arbitration. Can it get context switched? Why or why not?

Problem 1b[3pts]: What are some of the hardware differences between kernel mode and user
mode? Name at least three.

Problem 1c[3pts]: Name three ways in which the processor can transition from user mode to
kernel mode. Can the user execute arbitrary code after transitioning?

Problem 1d[3pts]: What is a thread? What is a process? Describe how to create each of these.

 Page 3/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 1e[3pts]: Suppose that we have a two-level page translation scheme with 4K-byte pages
and 4-byte page table entries (includes a valid bit, a couple permission bits, and a pointer to another
page/table entry). What is the format of a 32-bit virtual address? Sketch out the format of a
complete page table.

Problem 1f[2pts]: What needs to be saved and restored on a context switch between two threads in
the same process? What if the two threads are in different processes? Be explicit.

Problem 1g[1pt]: What is a thread-join operation?

 Page 4/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 1h[3pts]: Name at least three ways in which context-switching can happen in a non-
preemptive scheduler.

Problem 1i[3pts]: Name three ways in which processes on the same processor can communicate
with one another. If any of the techniques you name require hardware support, explain.

Problem 1j[2pts]: What is an interrupt? What happens when an interrupt occurs? What is the
function of an interrupt controller?

 Page 5/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

[This page intentionally left blank]

 Page 6/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 2: Monitors
Problem 2a[2pts]: What is a monitor?

Problem 2b[5pts]: Provide Java class definitions for each of the components of a monitor. Include
specifications for local data and methods (names and arguments, not implementation); method
names should adhere to the interface defined in class. Make sure to document each method by
saying what it should do. Be brief! Hint: you should have two different object classes.

Problem 2c[2pts]: What is the difference between Mesa and Hoare scheduling for monitors?

 Page 7/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 2d[8pts]: In parallel programs (one multi-threaded process), a common design
methodology is to perform processing in sequential stages. All of the threads work independently
during each stage, but they must synchronize at the end of each stage at a synchronization point
called a barrier. If a thread reaches the barrier before all other threads have arrived, it waits. When
all threads reach the barrier, they are notified and can begin execution on the next phase of the
computation.

Example:

 While (true) {
 Compute stuff;
 BARRIER();
 Read other threads results;
 }

There are three complications to barriers. First, there is no master thread that controls the threads,
waits for each of them to reach the barrier, and then tells them to restart. Instead, the threads must
monitor themselves and determine when they should wait or proceed. Second, for many dynamic
programs, the number of threads that will be created during the lifetime of the parallel program is
unknown in advance, since a thread can spawn another thread, which will start in the same program
stage as the thread that created it. Third, a thread may end before the barrier. In all cases, all
threads must wait at the barrier for all other threads before anyone is allowed to proceed.

Provide the pseudo-code for a monitor class called Barrier that enables this style of barrier
synchronization. Your solution must support creation of a new thread (an additional thread that
needs to synchronize), termination of a thread (one less thread that needs to synchronize), waiting
when a thread reaches the barrier early, and releasing waiting threads when the last thread reaches
the barrier. Implement your solution using monitors. You should never busy-wait; threads waiting
at a barrier should be sleeping.

Your class must implement the following three methods: threadCreated(),
threadEnd(), and enterBarrier(). Think carefully about efficiency and avoid
unnecessary looping. Feel free to utilize space on the next page.

 Page 8/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

[This page intentionally left blank]

 Page 9/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 3: Lock-Free Queue
An object such as a queue is considered “lock-free” if multiple processes can operate on this object
simultaneously without requiring the use of locks, busy-waiting, or sleeping. In this problem, we
are going to construct a lock-free FIFO queue using an atomic “swap” operation. This queue needs
both an Enqueue and Dequeue method.

We are going to do this in a slightly different way than normally. Rather than Head and Tail
pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last
object returned from the queue. Thus, we can find the head of the queue (for dequing). Here are the
basic class definitions (assuming that only one thread accesses the queue at a time):

// Holding cell for an entry
class QueueEntry {
 QueueEntry next = null;
 Object stored;
 int taken = 0;

 QueueEntry(Object newobject) {
 stored = newobject;
 }
}

// The actual Queue (not yet lock free!)
class Queue {
 QueueEntry prevHead = new QueueEntry(null);
 QueueEntry tail = prevHead;

 void Enqueue(Object newobject) {
 newEntry = new QueueEntry(newobject);
 tail.next = newEntry;
 tail = newEntry;
 }

 Object Dequeue() {
 QueueEntry nextEntry = prevHead.next;
 While ((nextEntry != null) && nextEntry.taken == 1) {
 nextEntry = nextEntry.next;
 }
 if (nextEntry == null) {
 return null;
 } else {
 nextEntry.taken = 1;
 prevHead = nextEntry;
 return nextEntry.stored;
 }
 }
}

 Page 10/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 3a[10pts]:
Suppose that we have an atomic swap instruction. This instruction takes a local variable (register)
and a memory location and swaps the contents. Although Java doesn’t contain pointers, we might
describe this as follows:
 Object AtomicSwap(variable addr, Object newValue) {
 object result = *addr; // get old object stored in addr
 *addr = newValue; // store new object into addr
 return result; // Return old contents of addr
 }

With this primitive, we might build a test-and-set lock as follows:
 int mylock = 0;

 // grab lock
 while (AtomicSwap(mylock,1) == 1);
 // got lock

Rewrite code for Enqueue(), using the AtomicSwap() operation, such that it will work for any number
of simultaneous Enqueue and Dequeue operations. You should never need to busy wait. Do not use
locking (i.e. don’t use a test-and-set lock). The solution is tricky but can be done in a few lines. We will be
grading on conciseness. Hint: during simultaneous insertions, objects may be temporarily disconnected from
the queue (i.e. the set of entries reachable by nextEntry = nextEntry.next starting from
prevEntry); but eventually the queue needs to be connected.

 Page 11/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 3b[10pts]:
Rewrite code for Dequeue() such that it will work for any number of simultaneous threads working
at once. Again, do not use locking. You should never need to busy wait. The solution is tricky but
can be done by modifying a small number of lines. We will be grading on conciseness. Hint:
before grabbing a queue entry, make sure that you “take” it atomically. You are striving for
correctness. If you can explain why it is ok, you can allow prevHead to get temporarily out of date,
but try to avoid letting prevHead get too far behind the actual head of the list.

 Page 12/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 4: Scheduling
Problem 4a[2pts]:
Six jobs are waiting to be run. Their expected running times are 10, 8, 6, 3, 1, and X. In what order
should they be run to minimize average completion time? State the scheduling algorithm that
should be used AND the order in which the jobs should be run. (Your answer will depend on X).

Problem 4b[4pts]:
Name and describe 4 different scheduling algorithms. What are the advantages and disadvantages
of each?

 Page 13/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 4c[3pts]:
Here is a table of processes and their associated running times. All of the processes arrive in
numerical order at time 0.

Process ID CPU Running
Time

Process 1 2
Process 2 6
Process 3 1
Process 4 4
Process 5 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1

Time Slot FCFS SRTF RR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 Page 14/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 4d[3pts]:
For each process in each schedule above, indicate the queue wait time and completion time
(otherwise known as turnaround time, TRT). Note that wait time is the total time spend waiting in
queue (all the time in which the task is not running):

Scheduler Process 1 Process 2 Process 3 Process 4 Process 5

FCFS wait
FCFS
TRT

SRTF wait
SRTF
TRT

RR wait

RR TRT

Problem 4e[3pts]:
Suppose that the context-switch time is 0.5 units. Assume that there is no context switch at time
zero. Fill out this table again:

Scheduler Process 1 Process 2 Process 3 Process 4 Process 5

FCFS wait
FCFS
TRT

SRTF wait
SRTF
TRT

RR wait

RR TRT

Problem 4f[3pts]:
The SRTF algorithm requires knowledge of the future. Why is that? Name two ways to
approximate the information required to implement this algorithm.

 Page 15/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

[This page intentionally left blank]

 Page 16/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 5: Deadlock
Problem 5a[2pts]:
List the conditions for deadlock.

Problem 5b[3pts]:
What are three methods of dealing with the possibility of deadlock? Explain each method and its
consequences to programmer of applications.

Problem 5c[3pts]:
Suppose that we have several processes and several resources. Name three ways of preventing
deadlock between these processes

 Page 17/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 5d[5pts]:
Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4. The total
number of each resource is:

 Total

A B C
12 9 12

Further, assume that the processes have the following maximum requirements and current
allocations:

Current Allocation Maximum Thread
ID A B C A B C
T1 2 1 3 4 3 4
T2 1 2 3 5 3 3
T3 5 4 3 6 4 3
T4 2 1 2 4 1 2

Is the system potentially deadlocked (i.e. unsafe)? In making this conclusion, you must show all
your steps, intermediate matrices, etc.

 Page 18/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

Problem 5e[3pts]:
Assuming the allocations in (5d), suppose that T1 asks for 2 more copies of A. Can the system
grant this or not? Explain.

Problem 5f[4pts]:
Assuming the allocations in (5d), what is the maximum number of additional copies of resources
(A, B, and C) that T1 can be granted in a single request without risking deadlock? Explain.

 Page 19/20

CS 162 Fall 2005 Midterm Exam I October 12, 2005

[This page intentionally left blank]

 Page 20/20

	Midterm I
	Problem

	 Problem 1: Short Answer
	Problem 1i[3pts]: Name three ways in which processes on the same processor can communicate with one another. If any of the techniques you name require hardware support, explain.
	 Problem 2: Monitors
	We are going to do this in a slightly different way than normally. Rather than Head and Tail pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last object returned from the queue. Thus, we can find the head of the queue (for dequing). Here are the basic class definitions (assuming that only one thread accesses the queue at a time):
	// Holding cell for an entry
	class QueueEntry { QueueEntry next = null;
	 Object stored;
	 int taken = 0; QueueEntry(Object newobject) {
	 stored = newobject;
	 }
	}
	// The actual Queue (not yet lock free!)
	class Queue {
	 QueueEntry prevHead = new QueueEntry(null);
	 QueueEntry tail = prevHead;
	 void Enqueue(Object newobject) {
	 newEntry = new QueueEntry(newobject);
	 tail.next = newEntry;
	 tail = newEntry;
	 }
	 Object Dequeue() {
	 QueueEntry nextEntry = prevHead.next;
	 While ((nextEntry != null) && nextEntry.taken == 1) {
	 nextEntry = nextEntry.next;
	 } if (nextEntry == null) { return null; } else {
	 nextEntry.taken = 1;
	 prevHead = nextEntry;
	 return nextEntry.stored;
	 } }
	}
	 Problem 3a[10pts]:
	Suppose that we have an atomic swap instruction. This instruction takes a local variable (register) and a memory location and swaps the contents. Although Java doesn’t contain pointers, we might describe this as follows:
	 Problem 4: Scheduling
	Time Slot
	RR
	Scheduler
	FCFS wait
	Suppose that the context-switch time is 0.5 units. Assume that there is no context switch at time zero. Fill out this table again:
	Scheduler
	FCFS wait

	Total
	Current Allocation
	Maximum
	T1
	Assuming the allocations in (5d), suppose that T1 asks for 2 more copies of A. Can the system grant this or not? Explain.

